xPC Target

For Use with Real-Time Workshop®

Modeling
Simulation

Implementation

I/0O Reference Guide _‘\The MathWorks

Version 2

X LB

How to Contact The MathWorks:

www . mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com

Web
Newsgroup

Technical support
Product enhancement suggestions
Bug reports

doc@mathworks.com
service@mathworks.com
info@mathworks.com

Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

xPC Target I/ O Reference Guide
© COPYRIGHT 2000 - 2005 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 2000
June 2001
September 2001
July 2002
September 2002
September 2003
June 2004
August 2004
October 2004
November 2004
March 2005

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.1 (Release 12.0)
Revised for Version 1.2 (Release 12.1)
Revised for Version 1.3 (Release 12.1+)
Revised for Version 2 (Release 13)
Revised for Version 2.0.1 (Release 13)
Revised for Version 2.0.1 (Release 13 SP1)
Revised for Version 2.5 (Release 14)
Revised for Version 2.6 (Release 14+)
Revised for Version 2.6.1 (Release 14SP1)
Revised for Version 2.7 (Release 14SP1+)
Revised for Version 2.7.2 (Release 14SP2)

xPC Target I/0 Library

1]

I/ODriverBlocks 1-2
I/O Driver Block Libraryo, 1-2
Memory-Mapped Devicescciuiiiiennnnnnnn. 1-5
ISABusI/ODevicesc.oiiiiiiiinnn. 1-5
PCIBusI/ODevicesoiiiiiiinnnnnnn. 1-6
xPC Target I/O Driver Structures 1-7
PWM and FM Driver Block Notes 1-8
Updated Driver Information 1-10

Adding 1I/0 Blocks with the xPC Target Library 1-11

Adding I/0 Blocks with the Simulink Library Browser .. 1-15

Defining I/0 Block Parameters 1-19

Serial Communications Support

2

Introduction to Serial Drivers 2-2
Hardware Connections for RS-232 2-3
Host and Target PC Communication 2-3

xPC Target RS-232 and 422/485 Drivers (Composite) 2-5
Adding RS-232Blocks i 2-6

Building and Running the Target Application (Composite) .. 2-11
RS-232/422/485 Simulink Block Reference 2-12

Contents

ii

Contents

xPC Target RS-232 Drivers (Conventional) 2-60

Simulink Blocks for RS-232 I/0 (Conventional) 2-60
MATLAB Message Structures for RS-232 I/O (Conventional) 2-61
RS-232 Synchronous Mode (Conventional) 2-62
RS-232 Asynchronous Mode (Conventional) 2-71
RS-232 Simulink Block Reference (Conventional) 2-83
RS-232 MATLAB Structure Reference (Conventional) 2-88
RS-232 Binary Mode (Conventional) 2-93

3|

Introduction to GPIB Drivers 3-2
Hardware Connectionsfor GPIB 3-2
Simulink Blocks for GPIB 3-3
MATLAB Message Structures for GPIB 3-3

Using GPIBDrivers i, 3-5
Adding GPIB Driver Blocks 3-5
Creating GPIB Message Structures 3-10

GPIB Simulink Block Reference 3-13
GPIB-232CT-A Setup Block 3-13
GPIB-232CT-A Send/Receive Block 3-15

GPIB MATLAB Structure Reference 3-16
GPIB Initialization and Termination Message Structures ... 3-17
GPIB Send/Receive Message Structure 3-18
Shortcuts and Features for Messages 3-21
Supported Data Types for Message Fields 3-23

CAN I/O Support

4|

Introduction 4-3
xPC Target CAN Libraryc0iiiiiiiin... 4-3
CAN-AC2 .. 4-5
CAN-AC2-PCI ... e e e e e 4-6
CAN-AC2-104 . ..o e e e 4-6

CAN Driver Blocks for the CAN-AC2 (ISA) with Philips

PCA 82C200 CAN Controller 4-7
Setup Driver Block i 4-8
Send Driver Block 4-10
Receive Driver Block 4-11

CAN Driver Blocks for the CAN-AC2 (ISA) with Intel 82527

CAN Controller 4-14
Setup Driver Block 4-15
Send Driver Block 4-18
Receive Driver Block 4-20

CAN Driver Blocks for the CAN-AC2-PCI with Philips

SJA1000 CAN Controller 4-22
Setup Driver Block 4-23
Send Driver Block 4-26
Receive Driver Block 4-28

CAN Driver Blocks for the CAN-AC2-104 (PC/104) with

Philips SJA1000 CAN Controller 4-30
Setup Driver Block 4-31
Send Driver Block i 4-34
Receive Driver Block 4-36

Constructing and Extracting CAN Data Frames 4-38
CAN Bit-Packing Block 4-39
CAN Bit-Unpacking Block 4-43

Detecting Time-Outs When Receiving CAN Messages 4-47
CAN Timeout Detection Block 4-48

iii

iv

Contents

Model Execution Driven by CAN Messages

(Interrupt Capability of CAN Receive Blocks) 4-49
CAN-AC2 (ISA) ..ot e 4-49
CAN-AC2-PCI e 4-50
CAN-AC2-104 (PC/104)o 4-51

Defining Initialization and Termination CAN Messages . 4-53
Example e 4-54

CAN-AC2 and CANopen Devices 4-55

CAN 1I/0O Support for FIFO

5]

Introduction 5-2
FIFO Mode Drivers for CAN Boards from Softing 5-3

CAN FIFO Driver Blocks for the CAN-AC2-PCI with

Philips SJA1000 CAN Controller 5-6
FIFO Setup Driver Block 5-7
FIFO Write Driver Block 5-11
FIFO Read Driver Block 5-13
FIFO Read Filter Block 5-16
FIFO Read XMT Level Driver Block 5-18
FIFO Reset XMT Driver Block 5-19
FIFO Read RCV Level Driver Block 5-20
FIFO Reset RCV Driver Block 5-21

CAN FIFO Driver Blocks for the CAN-AC2-104 with

Philips SJA1000 CAN Controller 5-22
FIFO Setup Driver Block 5-23
FIFO Write Driver Block 5-27
FIFO Read Driver Block 5-29
FIFO Read Filter Block 5-32
FIFO Read XMT Level Driver Block 5-34
FIFO Reset XMT Driver Block 5-35
FIFO Read RCV Level Driver Block 5-36
FIFO Reset RCV Driver Block 5-36

Acceptance Filters 5-38

Examples 5-40
Example 1 e 5-40
Example 2 5-42
Example 3 5-43
Example 4 e 5-44
Example 5 e 5-44
Example 6 5-45

UDP I/O Support

6

User Datagram Protocol (UDP) 6-2
What IsUDP? e e 6-2
Why UDP? ... e 6-4
Note on UDP Communication 6-4

xPC Target UDPBlocks 6-5
UDP Communication Setup 6-5
UDP Receive Block 6-6
UDPSendBlock i 6-8
UDPPackBlock 6-9
UDP Unpack Block 6-10

Byte Reversal/Change Endianess Block 6-11

vi

xPC Target UDPExamples 6-13
UDPExample iiiiean.. 6-13

7|

Condor e 7-2
Board Characteristics, 7-3
Condor CEI-x20 Initialize 7-3
Condor CEI-=x20 Send 7-4
Condor CEI-x20 Receive, 7-5
Encode ARINC 429 Words forSend 7-6
Decode ARINC 429 Words from Receive 7-9

Access IO

WDG-CSM . .. 8-2

WDG-CSM Watchdog Timer 8-2
ADDI-DATA

APCI-1710 9-2
APCI-1710 Incremental Encoder 9-2

PA-1700 ..o 9-5
PA-1700 Incremental Encoder 9-5

Contents

Adlink

10

Adlink PCI-8133t 10-2
PCI-8133 3-Phase PWM 10-2
Adlink PCI-6208At 10-5
PCI-6208A AnalogOutput 10-5
PCI-6208A Digital Input 10-7
PCI-6208A Digital Output 10-8
Advantech

PCL-1800 e 11-3
PCL-1800 Analog Input (A/D)ccoiiiirinnn... 11-3
PCL-1800 Analog Output (D/A) 11-5
PCL-1800 Digital Input 11-6
PCL-1800 Digital Outputooneoeeneeeennnennn.. 11-7
PCL-T11B 11-8
PCL-711B AnalogInput (A/D) 11-8
PCL-711B Analog Output (D/A) 11-10
PCL-711B Digital Input, 11-10
PCL-711B Digital Outputoovoeeeneanenen .. 11-11
PCL-726 11-12
PCL-726 Analog Output (D/A) 11-12
PCL-726 Digital Input 11-14
PCL-726 Digital Qutput vivnin... 11-15
PCL-727 . . . 11-16
PCL-727 Analog Output (D/A) 11-16
PCL-727 Digital Input 11-18
PCL-727 Digital Qutput, 11-19

vii

PCL-728 . .. e 11-20

PCL-728 Analog Output (D/A) 11-20
PCL-812 11-22
PCL-812 Analog Input (A/D) 11-22
PCL-812 Analog Output (D/A) 11-24
PCL-812 Digital Input 11-25
PCL-812 Digital Outputooovoneeenenanannn .. 11-26
PCL-812PGttt it 11-27
PCL-812PG Analog Input (A/D) 11-27
PCL-812PG Analog Output (D/A) 11-29
PCL-812PG Digital Input 11-30
PCL-812PG Digital Outputccvvuvnin... 11-31
PCL-818 11-32
PCL-818 Analog Input (A/D) 11-32
PCL-818 Analog Output (D/A) 11-34
PCL-818 Digital Input 11-35
PCL-818 Digital Output 11-36
PCL-818H e 11-38
PCL-818H Analog Input (A/D) 11-38
PCL-818H Analog Output (D/A) 11-40
PCL-818H Digital Input 11-41
PCL-818H Digital Output 11-42
PCL-8I8HD it 11-43
PCL-818HD Analog Input (A/D) 11-43
PCL-818HD Analog Output (D/A), 11-45
PCL-818HD Digital Input 11-46
PCL-818HD Digital Output 11-47
PCL-8I8HGttt et e 11-48
PCL-818HG Analog Input (A/D), 11-48
PCL-818HG Analog Output (D/A) 11-50
PCL-818HG Digital Input 11-51
PCL-818HG Digital Output . . . oo vveeeeeeeeeen .. 11-52

viil Contents

PCL-8I8L 11-53

PCL-818L Analog Input (A/D), 11-53
PCL-818L Analog Output (D/A) 11-55
PCL-818L DigitalInput, 11-56
PCL-818L Digital Output 11-57
Analogic

ATMI .. e 12-2
AIM12 Analog Input (A/D) 12-3
AIM12 Digital Input 124
AIM12 Digital Output 12-5
AIMIG e 12-6
AIM16 Analog Input (A/D) 12-7
AIM16 Digital Input 12-8
AIM16 Digital Output 12-9
BittWare

Audio-PMCH+ 13-2
Audio-PMC+ AnalogInput 13-3
Audio-PMC+ AnalogOutput 13-5
BVM

PMCDIOG4 e 14-2
PMCDIO64 Digital Input 14-3

PMCDIO64 Digital Output 14-4

X

Contents

Contec

15

Contec AD12-16(PCI)00t 15-3
AD12-16(PCI) Analog Input (A/D) 15-3
AD12-16(PCI) Digital Input 15-5
AD12-16(PCI) Digital Outputooovnernennennnn... 15-6

Contec AD12-16(PCDE 15-8
AD12-16(PCDE Analog Input (A/D) 15-8
AD12-16(PCDE Analog Output (D/A) 15-10

Contec AD12-16U(PCDE, 15-11
AD12-16U(PCDE Analog Input (A/D) 15-11
AD12-16U(PCDE Analog Output (D/A) 15-12

Contec ADI12-16(PCI) 15-14
ADI12-16(PCI) Analog Input (A/D) 15-14

Contec AD12-64(PCI) i 15-16
AD12-64(PCI) Analog Input (A/D), 15-16
AD12-64(PCI) Digital Inputooovuernennennnn.. 15-18
AD12-64(PCI) Digital Outputovoveereeenn... 15-19

Contec AD16-16(PCDE 15-21
AD16-16(PCDE Analog Input (A/D) 15-21
AD16-16(PCDE Analog Output (D/A) 15-22

Contec DA12-4(PCI) i 15-24
DA12-4(PCI) Analog Output (D/A) 15-24

Contec DA12-16(PCI) 15-26
DA12-16(PCI) Analog Output (D/A) 15-26

Contec PIO-32/32T(PCI)t 15-28
PIO-32/32T(PCI) Digital Input 15-28
PIO-32/32T(PCI) Digital Output 15-29

Contec CNT24-4D(PCI) 15-31
CNT24-4D(PCI) Incremental Encoder 15-31

Data Translation

16 |

D282 16-3
DT2821 Analog Input (A/D)o, 16-3
DT2821 Analog Output (D/A), 16-5
DT2821 Digital Input, 16-6
DT2821 Digital Outputovoroeeeeeneenen. 16-7

DT2821-F-8DIttt 16-8
DT2821-F-8DI Analog Input (A/D) 16-8
DT2821-F-8DI Analog Output (D/A) 16-10
DT2821-F-8DI Digital INpUt « . .« .o vvveeeeeeee 16-11
DT2821-F-8DI Digital Output« v o vveeeeeeeen.. 16-12

DT2821-G-8DI 16-13
DT2821-G-8DI Analog Input (A/D) 16-13
DT2821-G-8DI Analog Output (D/A) 16-15
DT2821-G-8DI Digital Inputo vveeeeeeeaen. 16-16
DT2821-G-8DI Digital Output 16-17

DT2821-F-16SE i 16-18
DT2821-F-16SE Analog Input (A/D) 16-18
DT2821-F-16SE Analog Output (D/A) 16-20
DT2821-F-16SE Digital Input 16-21
DT2821-F-16SE Digital Output 16-22

DT2821-G-16SE 16-23
DT2821-G-16SE Analog Input (A/D) 16-23
DT2821-G-16SE Analog Output (D/A) 16-25
DT2821-G-16SE Digital Tnputoooorerernnnn... 16-26
DT2821-G-16SE Digital Outputoovevn... 16-27

D282 e 16-28
DT2823 Analog Input (A/D), 16-28
DT2823 Analog Output (D/A) 16-29
DT2823 Digital Input 16-30
DT2823 Digital Outputovovoeeneeeeeenn.. 16-31

xi

xii

DT2824-PGH i 16-33

DT2824-PGH Analog Input (A/D) 16-33
DT2824-PGH Digital Input 16-35
DT2824-PGH Digital Outputovonrerenennn. .. 16-36
DT2824-PGL i 16-37
DT2824-PGL Analog Input (A/D) 16-37
DT2824-PGL Digital Input 16-39
DT2824-PGL Digital Output oo vveeeeeeeeen .. 16-40
DT 2825 ... 16-41
DT2825 Analog Input (A/D), 16-41
DT2825 Analog Output (D/A) 16-43
DT2825 Digital Input 16-44
DT2825 Digital Output 16-45

D 2827 . .. 16-46
DT2827 Analog Input (A/D) 16-46
DT2827 Analog Output (D/A) 16-47
DT2827 Digital Input 16-48
DT2827 Digital Output 16-49
DT2828 e 16-51
DT2828 Analog Input (A/D) 16-51
DT2828 Analog Output (D/A) 16-53
DT2828 Digital Input 16-54
DT2828 Digital Output 16-55
Diamond

17 |

Diamond-MM 17-3
MM AnalogInput (A/D) 17-3
MM Analog Output (D/A) 17-5
MM DigitalInput i 17-7
MM Digital Output 17-7

Contents

Diamond-MM-16-AT 17-9

MM-16-AT Analog Input (A/D) 17-10
MM-16-AT Analog Output (D/A) 17-11
MM-16-AT Digital Input 17-12
MM-16-AT Digital Output 17-13
Diamond-MM-32-AT 17-15
MM-32-AT Analog Input (A/D) 17-16
MM-32-AT Frame Analog Input (A/D) 17-17
MM-32-AT Analog Output (D/A) 17-20
MM-32-AT Digital Input 17-21
MM-32-AT Digital OQutput 17-22
Garnet-MM e 17-25
Garnet-MM Digital Input 17-25
Garnet-MM Digital Qutput 17-26
OnyX-MM e 17-28
Onyx-MM Digital Input 17-28
Onyx-MM Digital Output 17-29
Onyx-MM-DIO i 17-31
Onyx-MM-DIO Digital Input 17-31
Onyx-MM-DIO Digital Output 17-32
Prometheus 17-34
Prometheus Analog Input (A/D) 17-35
Prometheus Analog Output (D/A) 17-36
Prometheus Digital Input 17-37
Prometheus Digital Output 17-38

xiii

Xiv Contents

Quartz-MM 5 17-40

Quartz-MM 5 Digital Input 17-41
Quartz-MM 5 Digital Qutput 17-42
Quartz-MM5 Counter PWM 17-43
Quartz-MM5 Counter PWM & ARM 17-44
Quartz-MM5 Counter FM 17-46
Quartz-MM5 Counter FM & ARM 17-47
Quartz-MM5 PWM Captureccoovnn... 17-49
Quartz-MM5 FM Captureccciviieinn... 17-50
Quartz-MMxXX e 17-51
Quartz-MM 10 e 17-52
Quartz-MM 10 Digital Input 17-53
Quartz-MM 10 Digital Output 17-54
Quartz-MM 10 Counter PWM 17-54
Quartz-MM 10 Counter PWM & ARM 17-56
Quartz-MM 10 Counter FM 17-57
Quartz-MM 10 Counter FM & ARM 17-59
Quartz-MM 10 PWM Capture 17-60
Quartz-MM 10 FM Capture 17-61
Quartz-MMxXX e 17-62
Ruby-MM 17-63
Diamond Ruby-MM Analog Output (D/A) 17-63
Diamond Ruby-MM Digital Input 17-65
Diamond Ruby-MM Digital Output 17-66
Ruby-MM-416 i, 17-68
Ruby-MM-416 Analog Output (D/A) 17-68
Ruby-MM-416 Digital Input 17-70
Ruby-MM-416 Digital Output 17-71
Ruby-MM-1612 i, 17-73
Ruby-MM-1612 Analog Output (D/A) 17-73
Ruby-MM-1612 Digital Input 17-76
Ruby-MM-1612 Digital Output 17-77

General Standards

18|

Overview of PMC-ADADIO Functionality 18-2
A/DBlocks 18-3
Create Enable Signal Blocks 18-5
D/ABlockso 18-8
Interleaving Analog Input and Analog Output Blocks 18-10
Using Multiple Boards for Simultaneous Analog to Digital
CONVErSIONt vti ettt ettt 18-12

PMC-ADADIO e e 18-14
PMC-ADADIO Analog Input (A/D) Start 18-15
PMC-ADADIO Analog Input (A/D)Read 18-16
PMC-ADADIO Analog Output (D/A) Write 18-17
PMC-ADADIO Analog Output (D/A) Update 18-20
PMC-ADADIO DigitalInput 18-21
PMC-ADADIO Digital Output 18-22
Create Enable Signal 18-24

PMC-16A0-12 e 18-25
PMC-16A0-12 AnalogOutput 18-25

Humusoft
19 |

AD 512 .. 19-2
AD 512 AnalogInput (A/D) 19-3
AD 512 Analog Output (D/A) 19-4
AD 512 Digital INPUL .« o vvvee e e e 19-5

AD 512 Digital Output . . .« oo vveeeeee e 19-6

xvi

Contents

Keithley

DAS-1800HR 20-2
DAS-1800HR Analog Input (A/D) 20-3
DAS-1800HR Digital Inputovverresrennennn... 20-5
DAS-1800HR Digital Outputo vvoooeeeeeenn. .. 20-5

KCPI-1801HC i 20-7
KPCI-1801HC Analog Input (A/D), 20-8
KPCI-1801HC Analog Output (D/A) 20-10
KPCI-1801HC Digital Input 20-11
KPCI-1801HC Digital Outputo voverereneen. 20-12

KPCI-1802HC i 20-14
KPCI-1802HC Analog Input (A/D) 20-15
KPCI-1802HC Analog Output (D/A) 20-17
KPCI-1802HC Digital Input 20-18
KPCI-1802HC Digital Outputo vvoooeeeeennn. 20-19

Measurement Computing (Formerly

ComputerBoards)

CIO-CTROS5t e e e 21-5
CIO-CTRO5 Counter PWM 21-6
CIO-CTRO5 Counter PWM & ARM 21-7
CIO-CTRO5 Counter FM, 21-9
CIO-CTRO5 Counter FM & ARM 21-10
CIO-CTRO5 PWM Capturecccviinnnn... 21-12
CIO-CTRO5 Frequency Capture 21-13
CIO-CTRXX ..ttt et e e e e 21-13

CIO-CTRIO0 e e e e 21-14

CIO-CTR10 Counter PWM 21-15
CIO-CTR10 Counter PWM & ARM 21-16
CIO-CTR10 Counter FM 21-18
CIO-CTR10 Counter FM & ARM 21-19
CIO-CTR1I0PWM Capture, 21-21
CIO-CTR10 Frequency Capture 21-22
(07 10 2 0 N - 21-22
CIO-DACO8 (/12)t e e e e e 21-23
CIO-DACO08 Analog Output (D/A) 21-23
CIO-DACO8/16 e e 21-25
CIO-DACO08/16 Analog Output (D/A) 21-25
CIO-DACI16 (/12) o e 21-27
CIO-DAC16 Analog Output (D/A) 21-27
CIO-DACI16/16 e e 21-30
CIO-DAC16/16 Analog Output (D/A) 21-30
CIO-DASI16/330o 21-33
CIO-DAS16/330 Analog Input (A/D) 21-34
CIO-DASI16/JR (/12) e 21-35
CIO-DAS16/JR Analog Input (A/D) 21-36
CIO-DAS16/JR (/12) Analog Input (A/D) with EXP Signal
Conditioning Board 21-37
CIO-DAS16JR/16, 21-40
CIO-DAS16JR/16 Analog Input (A/D) 21-41
CIO-DASI601/12 e 21-42
CIO-DAS1601/12 Analog Input (A/D) 21-43
CIO-DAS1601/12 Analog Output (D/A) 21-44
CIO-DAS1601/12 Digital Input 21-45
CIO-DAS1601/12 Digital Output 21-46

xvii

xXViil Contents

CIO-DAS1602/12 i 21-49

CIO-DAS1602/12 Analog Input (A/D) 21-50
CIO-DAS1602/12 Analog Output (D/A) 21-51
CIO-DAS1602/12 Digital Input 21-52
CIO-DAS1602/12 Digital Output 21-53
CIO-DAS1602/16 i 21-55
CIO-DAS1602/16 Analog Input (A/D) 21-56
CIO-DAS1602/16 Analog Output (D/A) 21-57
CIO-DAS 1602/16 Digital Input 21-58
CIO DAS1602/16 Digital Output 21-59
CIO-DDAOG6 (/12) e 21-61
CIO-DDAO06 (/12) Analog Output (D/A) 21-62
CIO-DDAO06 (/12) Digital Input 21-63
CIO-DDAO06 (/12) Digital Output 21-64
CIO-DDAOG6/16t 21-67
CIO-DDAO06/16 Analog Output (D/A) 21-68
CIO-DDAO06/16 Digital Input 21-69
CIO-DDAO06/16 Digital Output 21-70
CIO-DIO24 e e 21-73
CIO-DIO24 DigitalInput, 21-73
CIO-DIO24 Digital Output 21-74
CIO-DIO24 Signal Conditioning 21-76
CIO-DIO24H e 21-77
CIO-DIO24H Digital Input 21-77
CIO-DIO24H Digital Output 21-78
CIO-DIOA48 e e 21-80
CIO-DIO48 DigitalInput 21-80
CIO-DIO48 Digital Output 21-81
CIO-DIO48H e e 21-84
CIO-DIO48H Digital Input 21-84
CIO-DIO48H Digital Qutput 21-86

CIO-DIO96 e 21-88

CIO-DIO96 Digital Input, 21-88
CIO-DIO96 Digital Outpuitvvvvveeeenannnen.. 21-89
CIO-DIOI192 e e e 21-92
CIO-DIO192 Digital Input 21-92
CIO-DIO192 Digital Outputoovvueeeenennnnn... 21-93
CIO-DO24DD e 21-96
CIO-D0O24DD Digital Output 21-96
CIO-PDISO160 i 21-98
CIO-PDISO16 Digital Input 21-98
CIO-PDISO16 Digital Output 21-99
CIO-QUADO2Z 21-101
CIO-QUADO2 Incremental Encoder 21-101
CIO-QUADO02 Incremental Encoder (Obsolete) 21-106
CIO-QUADO4 i 21-109
CIO-QUADO4 Incremental Encoder 21-110
CIO-QUADO04 Incremental Encoder (Obsolete) 21-114
PC104-DACO06 (/12) ... e 21-117
PC104-DACO06 (/12) Analog Output (D/A) 21-117
PC104-DASI6JR/12 i 21-119
PC104-DAS16JR/12 Analog Input (A/D) 21-119
PC104-DAS16JR/12 Digital Input 21-121
PC104-DAS16JR/12 Digital Output 21-122
PC104-DAS16JR/16, 21-123
PC104-DAS16JR/16 Analog Input (A/D) 21-123
PC104-DAS16JR/16 Digital Input 21-125
PC104-DAS16JR/16 Digital Output 21-126
PC104-DIO48 21-127
PC104-DI0O48 Digital Input 21-128
PC104-DI048 Digital Output 21-129

Xix

PCI-CTRO5 i 21-131

PCI-CTRO5 Counter PWM 21-132
PCI-CTRO5 Counter PWM & ARM 21-133
PCI-CTRO5 Counter FM 21-135
PCI-CTRO5 Counter FM & ARM 21-137
PCI-CTRO5 PWM Capture 21-138
PCI-CTRO5 Frequency Capture 21-139
PCI-CTRXX . oottt ittt et e 21-140
PCI-DASI200 it 21-141
PCI-DAS1200 Analog Input (A/D) 21-141
PCI-DAS1200 Analog Output (D/A) 21-143
PCI-DAS1200 Digital Input 21-144
PCI-DAS1200 Digital Outputovoueneeeennn.. 21-146
PCI-DAS1200/JR i 21-148
PCI-DAS1200/JR Analog Input (A/D) 21-148
PCI-DAS1200/JR Digital Input 21-149
PCI-DAS1200/JR Digital Output 21-151
PCI-DAS1602/12 e 21-153
PCI-DAS1602/12 Analog Input (A/D) 21-153
PCI-DAS1602/12 Analog Output (D/A)\ 21-155
PCI-DAS 1602/12 Digital Input 21-156
PCI-DAS1602/12 Digital Output 21-158
PCI-DAS1602/16, 21-160
PCI-DAS1602/16 Analog Input (A/D) 21-161
PCI-DAS1602/16 Analog Output (D/A) 21-162
PCI-DAS 1602/16 Digital Input 21-163
PCI-DAS1602/16 Digital Output 21-165
PCI-DDAO2/12 e 21-167
PCI-DDA02/12 Analog Output (D/A) 21-167
PCI-DDA02/12 Digital Input 21-169
PCI-DDA02/12 Digital Output 21-170

XX Contents

PCI-DDAO2/16 e 21-173

PCI-DDA02/16 Analog Output (D/A) 21-173
PCI-DDA02/16 Digital Input . . .« oo vveeeeeeeeaan 21-175
PCI-DDA02/16 Digital Outputooovnon... 21-176
PCI-DDAO4/12 21-179
PCI-DDA04/12 Analog Output (D/A) 21-179
PCI-DDA04/12 Digital Input 21-181
PCI-DDA04/12 Digital Outputoovernon... 21-182
PCI-DDAO4/16 i 21-185
PCI-DDA04/16 Analog Output (D/A) 21-185
PCI-DDA04/16 Digital Input . . .« oo vveeeeeeeeean 21-187
PCI-DDA04/16 Digital Outputoooovnon... 21-188
PCI-DDAOS/12 21-191
PCI-DDA08/12 Analog Output (D/A) 21-191
PCI-DDA08/12 Digital Input 21-193
PCI-DDAO08/12 Digital Qutput 21-194
PCI-DDAOS/16 it 21-197
PCI-DDA08/16 Analog Output (D/A) 21-197
PCI-DDA08/16 Digital Input\ ovoeeeeeren.. 21-199
PCI-DDAO08/16 Digital OQutput 21-200
PCI-DIO24 21-203
PCI-DIO24 Digital Input 21-203
PCI-DIO24 Digital Outputcouvninn.. 21-204
PCI-DIO24 Signal Conditioning 21-206
PCI-DIO24H it 21-207
PCI-DIO24H Digital Input 21-207
PCI-DIO24H Digital Output 21-208
PCI-DIO48H e it 21-211
PCI-DIO48H Digital Tnputovovernenernnn... 21-211
PCI-DIO48H Digital Output 21-212

xx1

xx1ii Contents

PCI-DIO96H i 21-215

PCI-DIO96H Digital Input 21-215
PCI-DIO96H Digital Output 21-216
PCI-DIO96 e 21-219
PCI-DIO96 Digital Input 21-219
PCI-DIO96 Digital Output 21-220
PCI-PDISOS8 e 21-223
PCI-PDISO8 Digital Input 21-223
PCI-PDISOS8 Digital Output 21-225
PCI-PDISO160 i 21-226
PCI-PDISO16 Digital Input 21-226
PCI-PDISO16 Digital Output 21-228
PCIM-DAS1602/160t 21-229
PCIM-DAS1602/16 Analog Input (A/D) 21-230
PCIM-DAS1602/16 Analog Output (D/A) 21-231
PCIM-DAS 1602/16 Digital Input 21-233
PCIM-DAS1602/16 Digital Output 21-234
PCIM-DDAOG6/16, 21-236
PCIM-DDA06/16 Analog Output (D/A) 21-236
PCIM-DDAO06/16 Digital Input 21-238
PCIM-DDAO06/16 Digital Qutput 21-239
PCI-DUAL-ACS e e 21-242
PCI-DUAL-AC5 Digital Input 21-242
PCI-DUAL-ACS5 Digital Output 21-243
PCI-QUADO4 e 21-246
PCI-QUADO04 Incremental Encoder 21-247
PCI-QUADO04 Incremental Encoder (Obsolete) 21-251
PCI-DAS-TC e e 21-254
PCI-DAS-TC Thermocouple 21-255

National Instruments

2 |

AT-AO-6 22-4
AT-AO-6 Analog Output (D/A) 22-4
AT-AO-10 ... 22-6
AT-AO-10 Analog Output (D/A) 22-6
PC-DIO-24 22-8
PC-DIO-24 Digital Input, 22-8
PC-DI0-24 Digital Output . . .« .o vvoveee e 22.9
PC-TIO-10 i 22-12
PC-TIO-10 Digital Input 22-12
PC-TIO-10 Digital Outpuato ovvveeeeee e, 22-13
PC-TIO-10 Counter PWM 22-15
PC-TIO-10 Counter PWM & ARM 22-16
PC-TIO-10 Counter FM 22-17
PC-TIO10 Counter FM & ARM 22-19
PC-TIO1I0PWMC Capture, 22-21
PC-TIO10 FM Capturecciiiiiinnnnnnnn.. 22-22
PC-TIO-10XX . ..ottt e et 22-22
PCI-6023E 22-23
PCI-6023E Analog Input (A/D) 22-24
PCI-6023E Digital Input 22-26
PCI-6023E Digital Outputo v ovveeeee e, 22.27
PCI-6023E Pulse Generation 22-28
PCI-6023E Pulse Width/Period Measurement 22-29
PCI-6024E 22-31
PCI-6024E AnalogInput (A/D) 22-32
PCI-6024E Analog Output (D/A) 22-34
PCI-6024E Digital Input 22-35
PCI-6024E Digital Output 22-36
PCI-6024E Pulse Generation 22-37
PCI-6024E Pulse Width/Period Measurement 22-38

xxiii

XX1V Contents

PCI-6025E e 22-40

PCI-6025E Analog Input (A/D) 22-41
PCI-6025E Analog Output (D/A) 22-43
PCI-6025E and PCI-6025E 8255 Digital Input 22-44
PCI-6025E Digital Output 22-45
PCI-6025E Pulse Generation 22-46
PCI-6025E Pulse Width/Period Measurement 22-47
PCI-6030E (Formerly PCI-MIO-16XE-10) 22-49
PCI-6030E Analog Input (A/D) 22-50
PCI-6030E Analog Output (D/A) 22-52
PCI-6030E Digital Input 22-54
PCI-6030E Digital Outputo ovvoeeee e, 22-55
PCI-6030E Pulse Generation 22-56
PCI-6030E Pulse Width/Period Measurement 22-57
PCI-6031E 22-59
PCI-6031E Analog Input (A/D) 22-60
PCI-6031E Analog Output (D/A) 22-62
PCI-6031E Digital Input 22-64
PCI-6031E Digital Output 22-65
PCI-6031E Pulse Generation 22-66
PCI-6031E Pulse Width/Period Measurement 22-67
PCI-6040E (Formerly PCI-MIO-16E-4) 22-69
PCI-6040E Analog Input (A/D) 22-70
PCI-6040E Analog Output (D/A) 22-72
PCI-6040E Digital Input 22-74
PCI-6040E Digital Outputo o veoeeee e, 22.75
PCI-6040E Pulse Generation 22-76
PCI-6040E Pulse Width/Period Measurement 22-77
PCI/PXI-6052E i 22-79
PXI/PCI-6052E Analog Input (A/D) 22-80
PXI/PCI-6052E Analog Output (D/A) 22-82
PXI/PCI-6052E Digital Input 22-84
PXI/PCI-6052E Digital Output 22-85
PXI/PCI-6052E Pulse Generation 22-86
PXI/PCI-6052E Pulse Width/Period Measurement 22-87

PCI-6070E (Formerly PCI-MIO-16E-1) 22-89

PCI-6070E Analog Input (A/D) 22-90
PCI-6070E Analog Output (D/A) 22-92
PCI-6070E Digital Input 22-94
PCI-6070E Digital Output 22-95
PCI-6070E Pulse Generation 22-96
PCI-6070E Pulse Width/Period Measurement 22-97
PCI-6071E 22-99
PCI-6071E Analog Input (A/D) 22-100
PCI-6071E Analog Output (D/A) 22-102
PCI-6071E Digital Input 22-104
PCI-6071E Digital Outputo ovveeeeeeeeaeen. 22-105
PCI-6071E Pulse Generation 22-106
PCI-6071E Pulse Width/Period Measurement 22-107
PCI-6503 22-109
PCI-6503 Digital Input 22-109
PCI-6503 Digital Output oo oveeeeeeeeeeeeen . 22-110
PCI-6527 e 22-113
PCI-6527 Digital Input 22-113
PCI-6527 Digital Outpuito v oveeeeeeeeeeeeeen . 22-115
PCI-6601 e 22-117
PCI-6601 Digital Input 22-117
PCI-6601 Digital Output 22-118
PCI-6601 Incremental Encoder 22-120
PCI-6601 Pulse Generation 22-121
PCI-6601 Pulse Width/Period Measurement 22-122
PCI-6601 Armed Pulse Generation 22-124
PCI/PXI-6602iiiiinn. 22-125
PCI/PXI-6602 Digital Input 22-125
PCI/PXI-6602 Digital Qutput 22-126
PCI/PXI-6602 Incremental Encoder 22-128
PCI/PX1-6602 Pulse Generation 22-129
PCI/PX1-6602 Pulse Width/Period Measurement 22-130
PCI/PXI-6602 Armed Pulse Generation 22-132

XXv

xXxVi Contents

PCI-6703 e 22-134

PCI-6703 Analog Output (D/A) 22-134
PCI-6704 22-136
PCI-6704 Analog Output (D/A) 22-136
PCI-6T11 e 22-138
PCI-6711 Analog Output (D/A) 22-138
PCI-6711 Digital Input 22-140
PCI-6711 Digital Output 22-141
PCI/PXI-6713 et 22-143
PCI/PXI-6713 Analog Output (D/A) 22-143
PCI/PXI-6713 Digital Input 22-145
PCI/PXI-6713 Digital Output 22-146
PCI-DIO-96 i 22-148
PCI-DIO-96 Digital Input 22-148
PCI-DIO-96 Digital Output 22-149
PXI-6040E 22-152
PXI-6040E Analog Input (A/D) 22-153
PXI-6040E Analog Output (D/A) 22-155
PXI-6040E Digital Input 22-157
PXI-6040E Digital Output 22-158
PXI-6040E Pulse Generation 22-159
PXI-6040E Pulse Width/Period Measurement 22-160
PXI-6070E 22-162
PXI-6070E Analog Input (A/D) 22-162
PXI-6070E Analog Output (D/A) 22-165
PXI-6070E Digital Input 22-166
PXI-6070E Digital Output 22-167
PXI-6070E Pulse Generation 22-169
PXI-6070E Pulse Width/Period Measurement 22-169

PXI-6071E e 22-171

PXI-6071E Analog Input (A/D) 22-172
PXI-6071E Analog Output (D/A) 22-174
PXI-6071E DigitalInput 22-176
PXI-6071E Digital Output 22-177
PXI-6071E Pulse Generation 22-178
PXI-6071E Pulse Width/Period Measurement 22-179
PXI-6508 22-181
PXI-6508 Digital Input 22-181
PXI-6508 Digital Output 22-182
PXI-6527 e 22-185
PXI-6527 Digital Input 22-185
PXI-6527 Digital Output 22-187
PXI-6704 e 22-189
PXI-6704 Analog Output (D/A) 22-189

North Atlantic Industries, Inc. (Formerly Apex)

23|

PC-12SD (PC-77SD1) e 23-2
PC-12SD (PC-77SD1) Synchro/Resolver 23-2
NAII (Apex) 73LD3 i, 23-5
73LD3 LVDT/RVDT Converter 23-5
NAII (Apex) 73SD3 e 23-8
NAII 73SD3 Synchro/Resolver 23-9
NAII (Apex) 76LD1 i, 23-12
NAITT6LDIL/D ..o e 23-12
NAII (Apex) 7T6CL10 i, 23-15
NAITT6CLIL/D ..o e e e 23-15
NAITT76CLID/L . ..o e e 23-18

xxvii

NAII (Apex) 76CS1 i, 23-21

NAITT6CS1IS/D ..ot e 23-21
NAII76CS1ID/S ..o e 23-25
Quanser
23 |

Q8 oo 24-2
Q8 AnalogInput 24-2
Q8 Analog Output 24-4
Q8 Digital Input 24-6
Q8 Digital Output 24-7
Q8 Incremental Encoder 24-8
Q8 Counter 24-11

Real Time Devices

2|

DMG6B420 e 25-2
DM6420 Analog Input (A/D) ..., 25-3
DM6420 Analog Output (D/A) 25-5
DM6420 Digital Input 25-6
DM6420 Digital Output 25-7

DMG6B430 25-9
DM6430 Analog Input (A/D), 25-9
DM6430 Analog Output (D/A)o 25-11
DM6430 Digital Input 25-12
DM6430 Digital Output 25-13

DMG6B604 25-15
DM6604 Analog Output (D/A)o ... 25-15
DM6604 Digital Input 25-16
DM6604 Digital Output 25-17

xxviiiContents

DMGB804 e 25-19

DM6804 Digital Input 25-20
DM6804 Digital Output 25-20
DM6804 Counter PWM 25-21
DM6804 Counter PWM & ARM 25-23
DM6804 Counter FM 25-24
DM6804 Counter FM & ARM 25-26
DM6804 PWM Captureciuiinirinnnnnnnnn.. 25-27
DM6804 FM Captureovvviieeiiieeneennn.. 25-28
DMOB8BO4XX . . vttt e 25-29
DMGBS814 25-30
DM6814 Incremental Encoder 25-31
DM6814 Digital INPUL o« oo vveee e e 25-31
DM6814 Digital Output 25-32
DMGBS8I6Bt 25-34
DM6816 PWM 25-34
DM7420 25-36
DM7420 Analog Input (A/D) ..., 25-36
DM7420 Digital Input 25-40
DM7420 Digital Output 25-40
SBS Technologies

Flex/104A PC/104 IP Carrier Board 26-2
Flex-104A . .. o e 26-2
IP-16ADC 26-4
IP-16ADC Analog Input (A/D) 26-4
IP-16DAC 26-6
IP-16DAC Analog Output (D/A) 26-6

XXIiX

XXX Contents

IP-DAC . . e 26-8

IP-DAC Analog Output (D/A) 26-8
IP-Digital 24 e 26-10
IP-Digital 24 Digital Input 26-10
IP-Digital 24 Digital Output 26-11
IP-HIADC 26-13
IP-HiADC Analog Input (A/D), 26-13
IP-Synchro 26-15
IP-Synchro i 26-15
IP-Unidig-E-48 i 26-17
IP-Unidig-E-48 Digital Input 26-17
IP-Unidig-E-48 Digital Qutput 26-18
PCI-40A CarrierBoard 26-20
PCI-40A ... 26-20
Broadcast Memoryciiiiiiiiannn... 26-21
Create Shared Memory Partitions 26-21
Initialize Shared Memory Nodes 26-24
SBS 2510/2500 Broadcast Memory 26-25
SBS25X0inito 26-26
SBS25x0read 26-27
SBS25x0 write 26-28
Shared Memory Pack 26-28
Shared Memory Unpack 26-29
Shared Memory Structure Reference 26-29

Sensoray

526 e 27-2
Sensorayb26 AD 27-2
Sensorayb26 Dual AD 27-3
Sensorayb26 DA 27-4
Sensorayb26 Dual DA, 27-5
Sensoray526 DI 27-7
Sensorayb26 DO 27-8
Sensoray526 Encoder Input 27-9

B26 27-11
Sensoray 626 Initialize 27-11
Sensoray 626 AnalogInput 27-12
Sensoray 626 Analog Output 27-13
Sensoray 626 DigitalInput 27-14
Sensoray 626 Digital Output 27-14
Sensoray 626 Encoder 27-15
Sensoray 626 PWM Capture 27-16

Softing

28

xxxi

Systran

29 |

Before You Start, 29-2
Create Shared Memory Partitions 29-2
Initialize Shared Memory Nodes 29-4

SCRAMNet+ SC150PCI, 29-5
SCI50 NIt . .ottt 29-5
SC150read . ..o it 29-6
SCI50 Write vvi e e 29-7
Shared Memory Pack 29-8
Shared Memory Unpack, 29-8

Shared Memory Structure Reference 29-9
Shared Memory Partition Structure 29-9
Shared Memory Node Initialization Structure 29-14

United Electronic Industries (UEI)

30 |

Groupingthe UEIBoards 30-4
Analog Input Frame Driver Blocks 30-6
Notes on Master and Slave Boards 30-6
Interrupt Numbers 30-7
Interrupt Configuration 30-9
Example Models 30-11
PD2-MF 12-Bit Series, 30-13
PD2-MF 12-Bit Series Analog Input (A/D) 30-14
PD2-MF 12-Bit Series Frame AnalogInput 30-15
PD2-MF 12-Bit Series Analog Output (D/A) 30-19
PD2-MF 12-Bit Series Digital Input 30-20
PD2-MF 12-Bit Series Digital Output 30-21

xxx1iContents

PD2-MF 14-Bit Series 30-23

PD2-MF 14-Bit Series Analog Input (A/D) 30-24
PD2-MF 14-Bit Series Frame Analog Input 30-25
PD2-MF 14-Bit Series Analog Output (D/A) 30-29
PD2-MF 14-Bit Series Digital Input 30-30
PD2-MF 14-Bit Series Digital Output 30-31
PD2-MF 16-Bit Series, 30-33
PD2-MF 16-Bit Series Analog Input (A/D) 30-34
PD2-MF 16-Bit Series Frame AnalogInput 30-35
PD2-MF 16-Bit Series Analog Output (D/A) 30-39
PD2-MF 16-Bit Series Digital Input 30-40
PD2-MF 16-Bit Series Digital Output 30-41
PD2-MFS 12-BitSeries o, 30-43
PD2-MFS 12-Bit Series Analog Input (A/D) 30-44
PD2-MFS 12-Bit Series Frame Analog Input 30-45
PD2-MFS 12-Bit Series Analog Output (D/A) 30-49
PD2-MFS 12-Bit Series Digital Input 30-50
PD2-MFS 12-Bit Series Digital Output 30-51
PD2-MFS 14-BitSeries, 30-53
PD2-MFS 14-Bit Series Analog Input (A/D) 30-54
PD2-MFS 14-Bit Series Frame Analog Input 30-55
PD2-MFS 14-Bit Series Analog Output (D/A) 30-59
PD2-MFS 14-Bit Series Digital Input 30-60
PD2-MFS 14-Bit Series Digital Output 30-61
PD2-MFS 16-BitSeries 30-63
PD2-MFS 16-Bit Series Analog Input (A/D) 30-64
PD2-MFS 16-Bit Series Frame Analog Input 30-65
PD2-MFS 16-Bit Series Analog Output (D/A) 30-69
PD2-MFS 16-Bit Series Digital Input 30-70
PD2-MFS 16-Bit Series Digital Output 30-71

xxxiii

Xxx1vVContents

PDXI-MF 12-Bit Series, 30-73

PDXI-MF 12-Bit Series Analog Input (A/D) 30-74
PDXI-MF 12-Bit Series Frame Analog Input 30-75
PDXI-MF 12-Bit Series Analog Output (D/A) 30-79
PDXI-MF 12-Bit Series Digital Input 30-80
PDXI-MF 12-Bit Series Digital Output 30-81
PDXI-MF 14-Bit Series 30-83
PDXI-MF 14-Bit Series Analog Input (A/D) 30-84
PDXI-MF 14-Bit Series Frame Analog Input 30-85
PDXI-MF 14-Bit Series Analog Output (D/A) 30-89
PDXI-MF 14-Bit Series Digital Input 30-90
PDXI-MF 14-Bit Series Digital Output 30-91
PDXI-MF 16-Bit Series, 30-93
PDXI-MF 16-Bit Series Analog Input (A/D) 30-94
PDXI-MF 16-Bit Series Frame Analog Input 30-95
PDXI-MF 16-Bit Series Analog Output (D/A) 30-99
PDXI-MF 16-Bit Series Digital Input 30-100
PDXI-MF 16-Bit Series Digital Output 30-101
PDXI-MFS 12-BitSeriesovuvn... 30-103
PDXI-MFS 12-Bit Series Analog Input (A/D) 30-104
PDXI-MFS 12-Bit Series Frame Analog Input........... 30-105
PDXI-MFS 12-Bit Series Analog Output (D/A) 30-109
PDXI-MFS 12-Bit Series Digital Input 30-110
PDXI-MFS 12-Bit Series Digital Output 30-111
PDXI-MFS 14-Bit Series 30-113
PDXI-MFS 14-Bit Series Analog Input (A/D) 30-114
PDXI-MFS 14-Bit Series Frame Analog Input 30-116
PDXI-MFS 14-Bit Series Analog Output (D/A) 30-120
PDXI-MFS 14-Bit Series Digital Input 30-121
PDXI-MFS 14-Bit Series Digital Output 30-122

PDXI-MFS 16-Bit Serieso ... 30-124

PDXI-MFS 16-Bit Series Analog Input (A/D) 30-125
PDXI-MFS 16-Bit Series Frame Analog Input........... 30-126
PDXI-MFS 16-Bit Series Analog Output (D/A) 30-130
PDXI-MFS 16-Bit Series Digital Input 30-131
PDXI-MFS 16-Bit Series Digital Output 30-132
PD2-AO Seriesot 30-134
PD2-A0 Analog Output (D/A) 30-134
PD2-AO Digital Input 30-136
PD2-AO Digital Output 30-137
PD2-DIO-64 e 30-139
PD2-DIO-64 Digital Input 30-140
PD2-DIO-64 Digital Output 30-141
PD2-DIO-128 e 30-143
PD2-DI0-128 Digital Input« vovoveeeeeeeeann 30-143
PD2-DI0-128 Digital Outputoueoeeeennn.. 30-144
PD2-DIO-128i 30-146
PD2-DIO-128i Digital Input 30-146
PD2-DI0-128i Digital Outputovoeeeeenennn.. 30-147
PDL-DIO-64 30-149
PDL-DIO-64 Digital Input 30-150
PDL-DIO-64 Digital Outputovouenrnnnnnn.. 30-151
PDXI-DIO-64 i 30-153
PDXI-DIO-64 DigitalInput 30-154
PDXI-DIO-64 Digital Output 30-155
PDXI-AO Seriesuiiiiiiiiiii .. 30-157
PDXI-AO Analog Output (D/A), 30-157
PDXI-AO Digital Input 30-159
PDXI-AO Digital Output vvoeeeeeee e, 30-160

XXXV

XxXxViContents

xPC Target Support for Vector CANape

31

Vector CANapeuiiiiiiiiiiiiinnn.. 31-2
Notes on xPC Target and Vector CANape 31-3
Configuring xPC Target and Vector CANape 31-5
Getting Started 31-5
Creating a new Vector CANape Project to Associate with a
Particular Target Application 31-7
Associating an Existing Vector CANape Project with a
Particular Target PC 31-9
Providing A2L Files for Vector CANape Database 31-10
Versalogic
3 |
VSBC-6 . ..o 32-2
VSBC-6 Analog Input (A/D), 32-2
VSBC-6 Digital Input 32-3
VSBC-6 Digital Output 324
VSBC-6 WatchDog i, 324

VMIC

3

Before You Start, 33-2
Create Shared Memory Partitions 33-2
Initialize Shared Memory Nodes 334

VMICPCI-5565ttt e 33-6
BBB5 NIt ... e 33-6
5565 read e 33-7
BBBS Write . ..o 33-8
5565 pack 33-9
5565 unpack 33-9
5565 broadcast 33-9

Shared Memory Structure Reference 33-11
Shared Memory Partition Structure 33-11
Shared Memory Node Initialization Structure 33-13

Miscellaneous Blocks

A

xPC Target ScopeBlock 34-3
xPC Target Scope of Type Target Parameters 34-3
xPC Target Scope of Type Host Parameters 34-6
xPC Target Scope of Type File Parameters 34-7

FromxPCTarget............. 34-10

ToxPCTarget 34-12

xPC Target FromFile 34-14
File Format 34-15
Block parameters 34-16

xPC Target Software Reboot 34-18
Block parameters 34-18

XxXxvii

xXxxVviiiContents

I/OPortRead 34-19

35|

I/OPortWrite 34-21
xPCTarget TET 34-23
xPCTarget Time, 34-24
Asynchronous Event Support 34-25
Adding an Asynchronous Event 34-25
Async IRQ Source Block 34-28
Async Rate Transition Block 34-29
Async Buffer Write and Read Blocks 34-30
Asynchronous Interrupt Examples 34-31
Obsoleted Drivers

xPC Target Library of Obsoleted Drivers 35-2
Burr-Brown 35-3
PCI-20003M e e e 35-3
PCI-20019M e 35-4
PCI-20023Mt e e 35-7
PCI-20041C e 35-9
PCI-20098C e 35-11
GeSPAC ... e e 35-15
GESADA-1 ... 35-15
GESPIA-2A 35-18
Measurement Computing (Computer Boards) 35-20
CIO-QUADO02 Incremental Encoder (Obsolete) 35-20
CIO-QUADO04 Incremental Encoder (Obsolete) 35-22
PCI-QUADO04 Incremental Encoder (Obsolete) 35-24

xPC Target 1/O Library

xPC Target is a solution for prototyping, testing, and deploying real-time systems using standard PC
hardware. In support of this, xPC Target allows you to add I/O blocks to your model. I/O blocks in
xPC Target provide a particular function of an I/O board. By using I/O blocks in your model, you can
generate executable code tuned specifically for your hardware. This chapter includes the following
sections:

I/0O Driver Blocks (p. 1-2) Introduction to the xPC Target I/O library of driver blocks

Adding I/0O Blocks with the xPC Target Adding I/O blocks to a model using the xPC Target library
Library (p. 1-11)

Adding I/0 Blocks with the Simulink Adding I/O blocks to a model using the Simulink® library
Library Browser (p. 1-15) browser

Defining I/0 Block Parameters Configuring I/0 driver blocks
(p. 1-19)

1 xPC Target 1/O Library

1/O Driver Blocks

You add I/O driver blocks to your Simulink model to connect your model to
physical I/O boards. These I/0 boards then connect to the sensors and actuators
in the physical system. This section includes the following topics:

¢ “I/O Driver Block Library” on page 1-2

® “Memory-Mapped Devices” on page 1-5

e “PCI Bus I/O Devices” on page 1-6

e “xPC Target I/O Driver Structures” on page 1-7

¢ “Updated Driver Information” on page 1-10

Refer to the following sections for descriptions on how to add I/O blocks to your
model, and how to configure those blocks:

® “Adding I/O Blocks with the xPC Target Library” on page 1-11
¢ “Adding I/O Blocks with the Simulink Library Browser” on page 1-15
® “Defining I/O Block Parameters” on page 1-19

1/O Driver Block Library

A driver block does not represent an entire board, but an I/O section supported
by a board. Therefore, the xPC Target library can have more than one block for
each physical board. I/O driver blocks are written as C-code S-functions
(noninlined S-functions). The source code for the C-code S-functions with xPC
Target is included.

xPC Target supports PCI and ISA buses. If the bus type is not indicated in the
driver block number, you can determine the bus type of a driver block by
checking the block’s parameter dialog box. The last parameter is either a PCI
slot, for PCI boards, or a base address, for ISA boards.

You can open the I/O device driver library with the MATLAB® command
xpclib. The library xpclib contains sublibraries grouped by the type of I/O
function they provide.

|/O Driver Blocks

Note Opening a dialog box for a source block causes Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must close
the dialog box to have the changes take effect and allow Simulink to continue.

In particular, hardware input blocks in the xPC Target library (blocks that
acquire data from hardware) are affected by this change.

I

File Edit WYiew Formatb Help

*¥PC Target Block Library

AT AT DA Digital Digital Counter Watchdog Incremental LWDT Synchro Aerozpace
Frame Input Output Encoder Resolver
R5232 GPIB Audia CAN LEL Thermo Signal Shared IP Carrier Mizz. Asynchronous UDP
couple Conditioning Memony Event (Beta)

Version 2.7.2
Copyright 1996-2005 The Mathiiods, Ine.

When you double-click one of these groups, the sublibrary opens, displaying a
list grouped by manufacturer as shown below.

1-3

1 xPC Target 1/O Library

=10l x|

File Edit Wew Formab Help

o [[B [[[

Dizrnond Geneml Humusoft

o [[o [[B [

UEI Verzakbgic

ke ithley Mational CQwoanser Real Time SBS SensomEy
hetmbyte Instruments Dewvices Technolkgies

Double-clicking one of the manufacturer groups then displays the set of I/O
device driver blocks for the specified I/O functionality (for example, A/D, D/A,

Digital Inputs, Digital Outputs, and so on).
The following figure shows the A/D drivers for the manufacturer Measurement

Computing, Inc.

E!Library: Kpcmeasurementcomputing -|EI ﬂ
File Edit View Format Help
CIO-DASTBAR GIO-DAS1601/12 GIO-DAS 1602112 GIO-DAS 16/330 GIO-DASTBLr EXP
GomputerBoams 1 Gompute Boamds 1 ComputerBoans 1 ComputerBoans 1 ComputarBoans
Anabg Input Analog Input Anaiog Input Anaiog Input Anaiog Input
CIO-DASIE JR CIo-DAS1601 12 CIC-DASI1B0Z 12 CIC-DAS1E 330 CIO-DASTEJR EXP
CI0-DASIGIRAG CIO-DAS1B02ME
GomputeBoards 1 GomputeBoards 1
Anabg Input Analog Input
GIO-DAS16JR 16 GIO-DAS 1602 16
PC104-DAS18JRM2 FG104-DASTGIRAE
GomputzBoards 1 GomputerBoards 1
Anakbg Input Anakg Input
FG104-DASIGIR 12 PC104-DASTEIR 16
PGI-DAS12004R PGI-DAS 1200 PGI-DAS 1602112 PGI-DAS 160216
GomputerBoams 1 Gompute Boamds 1 ComputerBoans 1 ComputerBoans 1
Anabg Input Analog Input Anaiog Input Anaiog Input
PCI-DAS1200 JR PCIDASTZ00 PCIDASTEO2 12 PCIDASTE02 16
PCIN-DAS 1602116
GomputerBoards 1
Anabg Input
PGIN-DAS 1602 16

14

|/O Driver Blocks

When you double-click one of these blocks, a Block Parameters dialog box
opens, allowing you to enter hardware-specific parameters. Parameters
typically include

® Sample time

® Number of channels

® Voltage range

¢ PCI slot (PCI boards)

® Base address (ISA boards)

Memory-Mapped Devices

Some supported boards in the xPC Target I/O library are memory-mapped
devices, for example, Burr-Brown boards. These memory-mapped boards are
accessed in the address space between 640 K and 1 MB in the lower memory
area. xPC Target reserves a 112 KB memory space for memory-mapped devices
in the address range

C0000 - DBFFF

Some drivers for memory-mapped devices allow you to select an address range
supported by the device, but not supported by xPC Target. For example, the
CAN drivers for Softing allow you to select memory ranges above DBFFF. Base
addresses of memory-mapped devices must be chosen within this memory
space for your target application to work properly. Select a memory range
supported by both the device and xPC Target.

ISA Bus 1/0O Devices
There are two types of ISA boards:

¢ Jumper addressable ISA cards
¢ PnP (Plug and Play) ISA cards

xPC Target only supports jumper addressable ISA cards (non-PnP ISA boards)
where you have to set the base address manually.

1 xPC Target 1/O Library

1-6

PCI Bus 1/0O Devices

The xPC Target I/O library supports I/O boards with a PCI bus. During the boot
process, the BIOS creates a conflict-free configuration of base addresses and
interrupt lines for all PCI devices in the target system. The user does not need
to define any base address information in the dialog boxes of the drivers.

All PCI device driver blocks have an additional entry in their dialog boxes. This
entry is called PCI Slot (-1 Autodetect) and allows you to use several
identical PCI boards within one target system. This entry uses a default value
of -1, which allows the driver to search the entire PCI bus to find the board. If
you specify a single number, X, greater than 0, the driver uses the board in bus
0, slot X. When more than one board of the same type is found, you must use a
designated slot number and avoid the use of autodetection. For manually
setting the slot number you use a number greater than or equal to 0. If the
board is not able to locate this slot in the target PC, your target application will
generate an error message after downloading.

If this additional entry is set to any value equal to or greater than 0, you must
be aware of the manufacturer’s identification number (Vendor ID) and the
board identification number (Device ID) of those boards supported by the

I/0 library. When the target is booted, the BIOS is executed and the target PC
monitor shows parameters for any PCI boards installed on the target PC. An
example is shown below:

Bus No Device Func. Vendor Device Device Class IRQ
No. No. ID ID
0 4 1 8086 7111 IDE controller 14/15
0 4 2 8086 7112 Serial bus 10
controller
0 11 0 1307 000B Unknown PCI device N/A
1 0 0 12D2 0018 Display controller 11

In this example, the third line indicates the location of the Measurement
Computing PCI-DI048 board. This is known since the Measurement
Computing vendor ID is 0x1307 and the device ID is Oxb. In this case, you now
can see that the Measurement Computing board is plugged into PCI slot 11
(Device No.), and that this value must be entered in the dialog box entry in your
I/0 device driver for each model that uses this I/O device.

|/O Driver Blocks

xPC Target 1/O Driver Structures

Properties for xPC Target I/O drivers are usually defined using the parameter
dialog box associated with each Simulink block. However, for more advanced

drivers, the available fields defined by text boxes, check boxes, and pull-down
lists are inadequate to define the behavior of the driver. In such cases, a more
textual description is needed to indicate what the driver has to do at runtime.
Textual in this context refers to a programming-language-like syntax and style.

xPC Target currently uses a string description contained in message structures
for the conventional RS-232, GPIB, CAN (initialization), and the general
counter drivers (AMD9513).

What is a message structure? — A message structure is a MATLAB array
with each cell containing one complete message (command). A message
consists of one or more statements.

First message Second message Third message

Message(l).field | Message(1).field | Message(l).field
Message(l).field | Message(l).field | Message(l).field
Message(l).field | Message(1).field | Message(l).field

Syntax of a message statement — Each statement in a message has the
following format:

Structure_name(index).field name = <field string or value>

The field names are defined by the driver, and need to be entered with the
correct upper- and lowercase letters. However, you can choose your own
structure name and enter that name into the driver parameter dialog box.

Creating a message structure — You could enter the message structure
directly in the edit field of the driver parameter dialog box. But because the
message structure is an array and very large, this becomes cumbersome very
easily.

A better way is to define the message structure as an array in an M-file and
pass the structure array to the driver by referencing it by name. For example,
to initialize an external A/D module and acquire a value during each sample
interval, create an M-file with the following statements:

1-7

1 xPC Target 1/O Library

1-8

Message (1) .senddata='InitADConv, Channel %d'
Message(1).inputports=[1]

Message (1) .recdata=""

Message (1) .outputports=[]

Message(2) .senddata='Wait and Read converted Value'
Message(2) .inputports=[]

Message(2) .recdata="'%f"

Message(2) .outputports=[1]

This approach is different from other xPC Target driver blocks:

® The M-file containing the definition of the message structure has to be
executed before the model is opened.

After creating your Simulink model and message M-file, set the preload
function of the Simulink model to load the M-file the next time you open the
model. In the MATLAB window, type

set_param(gcs, 'PreLoadFcn', 'M-file name'

® When you move or copy the model file to a new directory, you also need to
move or copy the M-file defining the message structure.

During each sample interval, the driver block locates the structure defined in
the Block Parameters dialog box, interprets the series of messages, and
executes the command defined by each message.

Specific drivers and structures — For detailed information on the fields in a
message structure, see the following chapters in this document:

¢ Chapter 2, “Serial Communications Support”
® Chapter 3, “GPIB I/O Support”
e Chapter 4, “CAN I/O Support”

PWM and FM Driver Block Notes

In PWM and FM driver blocks, your control over the output frequency and duty
cycle is not always precise. In particular, these values are affected by the way
that the base frequency is selected, as described in this section. The base
frequency value is exact.

|/O Driver Blocks

At the beginning of each sample time, two unsigned 16-bit integers, n and m,
are computed based on the block parameters and the current values of the
input signals. During the current sample period, the output signal is held high
for m cycles of the base frequency, low for the next n-m cycles, high for the next
m cycles, and so forth.

f— i

le N
ke n

=1

For a base frequency b, this results in a rectangular output signal of frequency
b/n and duty cycle m/n. Because m and n must be integers, it is not possible to
provide a continuous range of output frequencies and duty cycles with perfect
exactness.

For example, assume that you want to configure an FM block with a duty cycle
(m/n) of 1/2. The input signal f to this block is a relative frequency. It specifies
an output frequency of b x f.Because m and n must be integers, it is not always
possible to find values of m and n such that f will equal b/n exactly and n will
equal 2 x m(duty cyclem/n = 1/2) exactly. Such an exact match is only possible
when the input signal f equals 1/4, 1/6, 1/8, and so forth. The output
frequencies for the intervening input signal f values are approximate. The
errors are smaller as f approaches 0 and larger as f approaches 1.

Hint, to achieve the smallest margin of error, select the largest possible base
frequency. The fact that n and m must be 16-bit integers imposes a lower limit
ofb / (218 - 1) on the frequencies that can be generated using a given base
frequency.

1-9

1 xPC Target 1/O Library

1-10

Updated Driver Information

Because new drivers are always being added, and existing drivers are always
being updated, not all of the information about these drivers is included in the
online or printed documentation.

For updated and additional driver information, see the developer Web site at

http://www.mathworks.com/support/product/XP/productnews/productnew
s.html

Adding I/O Blocks with the xPC Target Library

Adding 1/0 Blocks with the xPC Target Library

xPC Target includes a Simulink block library for I/0 drivers. The highest
hierarchical level in the library is grouped by I/O function. The second level is
grouped by board manufacturer. The manufacturer groups within this second
level contain the driver blocks for specific boards.

This procedure uses the Simulink model xpc_osc.mdl as an example of how to
add and connect I/O blocks:

1 In the MATLAB window, type
xpclib

The Library: xpclib window opens.

I

File Edit WYiew Formatb Help

*¥PC Target Block Library

AT AT DA Digital Digital Counter Watchdog Incremental LWDT Synchro Aerozpace
Frame Input Output Encoder Resolver
R5232 GPIB Audia CAN LEL Thermo Signal Shared IP Carrier Mizz. Asynchronous UDP

couple Conditioning Memony Event (Beta)

Version 2.7.2
Copyright 1996-2005 The Mathiiods, Ine.

Alternatively, you can access the I/O driver library with the Simulink
Library Browser. See “Adding I/O Blocks with the Simulink Library
Browser” on page 1-15.

2 Open a function group. For example, to open the A/D group, double-click the
A/D block.

1-11

1 xPC Target 1/O Library

The manufacturer level opens.

E! Library: xpclib/A/D ;IQI ll

File Edit View Formab Help

"o [[B [[[

Advantech Anabgic Measumment Sontec Cata Dizrmond Geneml Humusoft

ol o [B o [B [

Faaith ey MNatianal Cuans=r R=al Tiee SBS SensomEy UEI Verzakbgic
etrmbyte Instruments Dewvices Technolkgies

Within each manufacturer group are the blocks for a single function.
3 Open a manufacturer group. For example, to open the A/D driver blocks
from Measurement Computing, double-click the group marked

Measurement Computing.

The window with the A/D driver blocks for Measurement Computing opens.

1-12

Adding I/O Blocks with the xPC Target Library

E!Library: rpcmeasurementcomputingl

File Edit View Format Help

=lolx|

GIO-DAS1602/12

GIO-DAS16/330

SIC-DASTBAR GIO-DASTE01/12
GomputerBoards 1 GomputeBoards 1 SomputerBoars 1 SomputerBoars 1 SomputarBoards
Analag Input Analag Input Analog Input Analog Input Analog Input
GIO-DAS1E JR GIO-DAS 1601 12 CIC-DASTE0Z 12 GI0-DAS1E 330 GIO-DAS 16.JR EXP

GI0-DASELr EXP

CIG-DASBIRAG
GomputerBoants 1
Anabg Input

GIO-DAS160ZHE
GomputeBoads 1
Analog Input

GIO-DAS1GIR 16

GIO-DAS 1602 16

PC104 DAS 18JRA2
GomputzrBoans 1
Anabg Input

FC104-DAS16JRI1E
ComputeBoamds 1
Anabog Input

PC104.DASTEIR 12

PC104-DAS1EIR 16

PGI-DAS12004R

PGI-DAS1200

PGI-DAS 1602112

PGI-DAS 1602116

GomputerBoards 1 GomputeBoards 1 SomputerBoars 1 SomputerBoars 1
Analag Input Analag Input Analog Input Analog Input
PGI-DASTE00 PGI-DASTEDR 12 PGI-DASTEDR 16

PCI-DAS1200 JR

PCIM-DAS1602/16
GomputerBoants 1
Anabg Input

PGIM-DAS 1602 16

4 In the Simulink window, type

XpC_0SC

The Simulink block diagram opens for the model xpc_osc.mdl.

Blocoe

=0l x|

File Edit Wiew Simulation Format Tools Help
nooo 100072
ve 52 +4005+100042
Signal Transfer Fon
Generator -

*PiC Tamet tutoral rode|

Scopel

5 From the block library, click and drag the name of an A/D board to the
Simulink block diagram. Likewise, click and drag the name of a D/A board

to your model.

Simulink adds the new I/O blocks to your model.

1-13

1 xPC Target 1/O Library

6 Remove the Signal Generator block and add the Analog Input block in its
place. Remove the Scope block and add the Analog Output block in its place.

The demo model xpcosc should look like the figure shown below.

File Edit ‘iew Simulation Formak Tools Help

=0l x|

GCIO-DAS1602/18 10002
ComputerBoards 1 | 3

Anzkog Input < +4005+1 00042
GI2-DAS1E02 16 Transfer Fcn

xPS Tamet tutorizl rode]

Glo-DAST1E02M6
1 SomputerBoads
Anakbg Sutput

GIO-DASTE0Z 16 1

You cannot run this model unless you have the I/O board shown installed in
your target PC. However, you can substitute the driver blocks for another

I/O board that is installed in the target PC.

Your next task is to define the I/O block parameters. See “Defining I/0 Block

Parameters” on page 1-19.

1-14

Adding 1/O Blocks with the Simulink Library Browser

Adding 1/0 Blocks with the Simulink Library Browser

xPC Target includes a Simulink block library for I/0 drivers. The highest
hierarchical level in the library is grouped by I/O function. The second level is
grouped by board manufacturer. The manufacturer groups within this second

level contain the driver blocks for specific boards.

This procedure uses the Simulink model xpc_osc.mdl as an example of how to

add and connect I/O blocks:

1 In the MATLAB window, type

XpC_0SscC

The Simulink block diagram opens for the model xpc_osc.mdl.

Expc_nsc

=10l]

File Edit Wiew Simulakion Format Tools Help

uoon 100042
00 »—
< +400s+1000"2
Signal Transfer Fcn
Generator -

*PiC Tamet tutoral rmode|

Scopel

1-15

1 xPC Target 1/O Library

2 In the Simulink window, from the View menu, click Library Browser.

The Simulink Library Browser window opens. Alternatively, you can open
the Simulink Library Browser by typing simulink in the MATLAB
Command Window.

_isixd

File Edit Wiew Help

DS |

Commonly Used Blocks: simulink/Commonly
Uszed Blocks

= Tl simulink: - Commorlg
----- 2] Commonly Used Blocks us=d blocks

.....] Continuous
----- 2 Discontinuities EentiucLs
----- | Discrete
----- 2+ Logic and Bit Operations
----- 2+ Lookup Tables
..... 2] Math Operations
----- 2] Model Werification
..... 2] Model-wide Utilities
----- 2] Ports & Subsystems
----- 2 signal sttributes
----- 2+ signal Routing

..... ysmks =
LY I_>l_|m

Commonly Used Blacks

Discontinuities

G LF

Discrete

Logic and Bit Operations

—
—_—_

fi %y

Lookup T ables

E

"+
% 1

Math Dperations LI
4

You can access the xPC Target I/O library by right-clicking xPC Target and
then clicking Open the xPC Target Library.

Alternatively, you can access driver blocks using the xPC Target I/O driver
library. See “Adding I/O Blocks with the xPC Target Library” on page 1-11.

3 Double-click xPC Target.

A list of I/O functions opens.

1-16

Adding 1/O Blocks with the Simulink Library Browser

JSIE

File Edit Wiew Help

DS =

‘ AJD: Select the settings for the subsystemn block.

B Real-Time workshop - g =
§| Real-Time Workshop Embedded Code
W simulink Extras [|
B stateflow E_ A/D Frame
- g =PC Target |
[]...y i) E— Aerospace
- 2 A0 Frame =
- 2 Aerospace E- Asynchronous Event
----- y Asynchronous Event L]
- 2 Audi
- 2] Audio Fal Audo
- P CAN L
[P Counter I, |
-2 pia o) o
P —
[2 Digital Input = [|
J — . | _’I—I E_ Caunter =l
Ready 4

4 Open a function group. For example, to open the A/D group for Measurement
Computing, double-click A/D, and then click Measurement Computing.

A list with the A/D driver blocks for Measurement Computing opens.

B Simulink Library Browser - IEI Iil
File Edit Wiew Help
DS =

CI0-DAS16 330 : Cl0-DAS1E6/300
ComputerBoards

532l a0

-----] Advantech

.....] analogic

-----] Contec

----- 2] Data Translation

----- 2+ Diarnond Cl0-Das1e01 12
-----] General Standards

..... 2 Hurmusoft Clo-Das160212
..... 2] Keithley Metrabyte i

----- y Measurement Cornputing Cio-pAsIaRIE

----- 2 Mational Instruments EODASTERZ18
.....] Quanser -

----- 2] Real Time Devices LID-DASTBIR 16

----- 2] 565 Technologies -
N - | _’I—I Comum e CI0-DasS1RIR EXP LI
Ready A

1-17

1 xPC Target 1/O Library

5 From the block library, click and drag the name of an A/D board to the
Simulink block diagram. Likewise, click and drag the name of a D/A board
to your model.

Simulink adds the new I/O blocks to your model.

6 Remove the Signal Generator block and add the analog input block in its
place. Remove the Scope block and add the analog output block in its place.

The model xpc_osc should look like the figure shown below.

T —ioix]

File Edit “iew Simulation Format Tools Help

GIO-DAS 160216 10002
ComputerBoards 1 | 3
Analog Input 54 +4005+100042 S16-DAS1602HE
1 GomputerBoamds
GI0-DMS1602 16 Transfer Feon ﬂn:bg Ciutput
| .
Ll

Clo-DAS1802 16 1
=PG Tamet tutoizl rmods|

You cannot run this model unless you have the I/O board shown above
installed in your target PC. However, you can substitute the driver blocks
for another I/O board that is installed in the target PC.

Your next task is to define the I/O block parameters. See “Defining I/0 Block
Parameters.”

1-18

Defining 1/O Block Parameters

Defining 1/0 Block Parameters

The I/0 block parameters define values for your physical I/O boards. For
example, I/O block parameters include channel numbers for multichannel
boards, input and output voltage ranges, and sample time.

This procedure uses the Simulink model xpc_osc.mdl as an example, and
assumes you have added an analog input and an analog output block to your
model. To add an I/O block, see either “Adding I/O Blocks with the xPC Target
Library” on page 1-11 or “Adding I/O Blocks with the Simulink Library
Browser.”

1 Inthe Simulink window, double-click the input block labeled Analog Input.
The dialog box for the A/D converter opens.

2 Fill in the dialog box. For example, for a single channel enter 1 in the
Number of Channels box, select —10 V for the input range, and select
single-ended (16 channels) for the MUX switch position. Enter the same
sample time you entered for the fixed step size in the Simulation ->
Configuration Parameters dialog box Solver pane. Enter the base address
for this ISA-bus board.

1-19

1 xPC Target 1/O Library

The Block Parameters dialog box should look similar to the figure shown
below.

[Z1Block Parameters: CID-DAS160Z 16 |

—adcbpeidas [mazk] [link]

CI0-DAS1E0246
ComputerBoards
Analog Input

—Parameters

Mumber of channels:

il

Fange wectar: I + 100 ;I
Input coupling: I Single-ended [16 channels] ;I
Sample time:

fo.om

Baze address (for example Dxd000);

| 0200

OF. I LCancel | Help |

3 In the Simulink window, double-click the output block labeled Analog
Output.

The dialog box for the D/A converter opens.

4 Fill in the dialog box. For example, for one channel enter [1] in the Channel
Vector box; for an output level of —10 V enter the code [-10] in the Range
Vector box. Enter the same sample time you entered for the fixed step size
in the Simulation -> Configuration Parameters dialog box Solver pane.
Enter the base address for this ISA-bus board. E

1-20

Defining 1/O Block Parameters

The Block Parameters dialog box should look similar to the figure shown

below.

[=1Block Parameters: CI0-DAS1602 16 1 21x|

—dachiza [mask] [link]

CI0-DAS1E02ME
ComputerBoards
Analog Dutput

—Parameters

Channel vector:

fim

Range wector:

{100

Reset vectar

i

Iritial walue wector:

fim

Sample time;

|o.om
Baze address [i.e. Oxd000]:

| 0300

Camcel | Help | Apply |

If you change the sample time by changing the target object property
SampleTime, the sample times you entered in both of the I/O blocks are set to
the new value. The step size you entered in the Configuration Parameters
dialog box remains unchanged.

Your next task is to build and run the target application. See “xPC Target
Application” in Chapter 3 of the xPC Target getting started documentation.

1-21

1 xPC Target 1/O Library

1-22

Serial Communications

Support

xPC Target interfaces the target PC to serial devices using either the COM1 or COM2 port of the
main board, through Quatech drivers, or through Diamond Systems drivers. This chapter includes

the following sections:

Introduction to Serial Drivers (p. 2-2)

xPC Target RS-232 and 422/485
Drivers (Composite) (p. 2-5)

xPC Target RS-232 Drivers
(Conventional) (p. 2-60)

Description of hardware connections and host/target PC
communications.

Description of composite xPC Target RS-232/422/485
drivers. Includes description of procedure to add an
RS-232 driver block to your Simulink model. Also
describes associated Simulink blocks.

Description of conventional xPC Target RS-232 drivers.
Includes description of procedures to add an RS-232
driver block to your Simulink model and create the
message structures associated with those blocks. Also
describes associated Simulink blocks and MATLAB
message structures associated with the Simulink blocks.

2 Serial Communications Support

Introduction to Serial Drivers

xPC Target supports RS-232 I/O communication with the following:

® Serial ports on the target PC
® Third-party Quatech PCI boards (http://www.quatech.com)

® Third-party Diamond Systems PC/104 boards
(http://www.diamondsystems.com)

For the target PC serial ports, xPC Target can use these ports as the RS-232
I/0 devices. You can initiate RS-232 communications with these ports and the
accompanying xPC Target drivers.

xPC Target also supports the following:

® RS-232 — QSC-100 and ESC-100 PCI boards from Quatech

e RS-422, RS-485 — QSC-200/300 PCI boards and DSCP-200/300 dual
channel PXI boards from Quatech, Fastcom: 422/2-PCI-335 adapter from
Commtech

o RS-232, RS-422, RS-485 — Emerald-MM and Emerald-MM-8 PC/104 boards
from Diamond Systems. These boards provide 4 and 8 serial ports,
respectively. These boards are jumper-configurable for the protocols (see the
manufacturer documentation for details).

xPC Target provides a set of functionally similar drivers for these boards. See
“RS-232/422/485 Simulink Block Reference” on page 2-12 for a description of
the driver blocks that support the different protocols.

xPC Target supplies two types of drivers to support RS-232 I/O communication,
conventional and composite:

® The composite drivers support RS-232 I/O for the target PC serial ports, the
Quatech RS-232, RS-422, and RS-485 I/O devices, and the Diamond Systems
RS-232 I/0 devices. These drivers support communication in asynchronous
binary mode. xPC Target uses Simulink blocks for the I/O drivers. The
composite drivers provide a simple ASCII encode/decode for the send and
receive RS-232, RS-422, and RS-485 blocks. This set of drivers has the
descriptive name “composite” because the driver represents each functional
piece of the driver as a Simulink block. For more precise behavior, you can
customize the RS-232 driver with these blocks.

Introduction to Serial Drivers

¢ The conventional drivers support RS-232 I/O only for the target PC serial
ports. These drivers support synchronous, asynchronous, and binary
(asynchronous) communication mode. xPC Target uses a model for this
RS-232 T/0 that includes both Simulink blocks for the I/O drivers and
MATLAB structures for sequencing messages and commands.

This section includes the following topics:

¢ “Hardware Connections for RS-232” on page 2-3 — Connect the target PC to
an RS-232 device.

® “Host and Target PC Communication” on page 2-3 — Consider limitations to
using RS-232 for I/O on the target PC when using RS-232 communication
between the host PC and target PC.

Hardware Connections for RS-232

xPC Target supports serial communication with the COM1 and COMZ2 ports on
the target PC.

Your target applications can use these RS-232 ports as I/O devices. Typically,
the target PC is connected to an RS-232 device with a NULL modem cable.
However, this depends on the DTE/DCE configuration of the devices, and you
might not use a NULL modem cable.

Target PC

RS-232

RS-232)
Device

connection

Host and Target PC Communication
If the host PC and target PC are connected using serial communication, one

COM port on the target PC is dedicated for communication with the host PC.
You cannot use this COM port in your block diagram as an I/O device.

For example, if the target PC uses COM1 for the communication with the host
PC, COM1 cannot be used by your block diagram. If you try to use COM1 as an
I/0O device in your block diagram, an error message is displayed. The error

2 Serial Communications Support

message appears when you attempt to build and download the target

application. In this example, you must use COMZ2 as an I/O device in your block
diagram.

If you are using TCP/IP as your host PC to target PC communications protocol,
then you can use any of the COM ports for RS-232 I/0.

Note When you use composite driver blocks, COM1 and COMS3 often share
interrupt line 4. Similarly, COM2 and COM4 often share interrupt line 3. If
you use COM1 for host-target communication, you cannot also use COM1 or
COMS in a model. This is because the shared interrupt is caught in the xPC
Target operating system. However, if COM3 uses an interrupt different from
that for COM1, you can use COM3 in a model while using COM1 for
host-target communications. If COM1 and COMS3 share an interrupt line, you
can use COM2 or COM4 as your RS-232 1/O port.

xPC Target RS-232 and 422 /485 Drivers (Composite)

xPC Target RS-232 and 422/485 Drivers (Composite)

This section describes the components that make up the RS-232 and
RS-422/485 composite drivers, and how you can create a model using these
drivers. These drivers perform RS-232 or RS-422/485 asynchronous
communications.

xPC Target supports the target PC serial ports (main board), Quatech
RS-232/422/485 devices, Diamond Systems RS-232 devices, and Commtech
Fastcom: 422/2-PCI-335 adapters with composite drivers. These drivers
distribute the functionality of the device across several subsystems and blocks.
For most RS-232/422/485 requirements, you can use these RS-232/422/485
drivers as they are implemented. However, if you need to customize the xPC
Target RS-232/422/485 drivers, the composite nature of the target PC serial
port, Quatech RS-232/422/485, Diamond Systems RS-232, and Commtech
Fastcom drivers enables you to do so. See “RS-232/422/485 Internal Blocks and
Subsystems” on page 2-49 for details.

Note the following characteristics of the Commtech Fastcom: 422/2-PCI-335
adapter boards:

® The Fastcom 422/2-PCI-335 board has only two independent RS-422
channels.

¢ The Fastcom 422/2-PCI-335 board can handle baud rates up to 1.5
megabaud.

¢ The Fastcom 422/2-PCI-335 board hardware FIFO is fixed at 128 bytes for
receive and transmit.

This section includes the following topics:

¢ “Adding RS-232 Blocks” on page 2-6
¢ “Building and Running the Target Application (Composite)” on page 2-11
® “RS-232/422/485 Simulink Block Reference” on page 2-12

Note Many of the blocks that support the RS-232 and RS-422/485 composite
drivers are common across the main board, Quatech, and Diamond Systems
boards. The descriptions for these blocks are applicable for all drivers, with
specific board notes as appropriate.

2 Serial Communications Support

2-6

Adding RS-232 Blocks

You add RS-232 subsystem blocks to your Simulink model when you want to
use the serial ports on the target PC, Quatech QSC-100 or ESC-100, or
Diamond Systems Emerald-MM or Emerald-MM-8 serial device connected to
the target PC, for 1I/O.

After you create a Simulink model, you can add xPC Target driver blocks and
configure those blocks. The following procedure describes how to use the serial
ports on the target PC for I/O with the composite drivers.

Before you start, decide what COM port combinations you want to use. The
example has you configure the Baseboard Send/Receive block. To properly
configure this block, you need to select serial port pairs. This parameter
specifies the ports for which you are defining transmit and receive. You have a
choice of the following:

® Com1/none
® Com2/none
® Com1/Com3
® Com2/Com4
® none/Com3
® none/Com4
® Custom

If you choose either the Com1/Com3 or Com2/Com4 pair, check that the port pair
shares an interrupt. If the port pair does not share an interrupt, you cannot use
the two ports as a pair.

Alternatively, you can define a Custom port pair. A Custom port pair is one that
does not match the existing combinations of port pairs. When you select
Custom, the dialog allows you to configure your own port pair. For example, you
can set the IRQ and two addresses for the port pair. If one of the ports is not
used, set that address to 0.

xPC Target RS-232 and 422 /485 Drivers (Composite)

Normally, the ports are set to the following:
COM1 — 0x3F8, IRQ 4

COM2 — 0x2F8, IRQ 3

COMS3 — 0x3ES (if present), IRQ 4

COM4 — 0x2ES (if present), IRQ 3

A Custom port pair is one where one or both ports of the pair are set to addresses
other than these conventions, or one for which you want to assign a different
IRQ value. Some hardware allows you to set the IRQ numbers independently.

If you choose the port pairs Com1/Com3 or Com2/Com4, you need to include one
Send/Receive subsystem block in the model. If you choose to use COM1 and
COM2, or COM1 and a custom port pair, you need to include two Send/Receive
blocks in the model.

The following example shows two models, one that uses a standard Com1/Com3
port pair, and one that uses custom port pairs:

1 In the MATLAB Command Window, type
xpclib

The xPC Target driver block library opens.
2 Double-click the RS-232 group block.

A window with blocks for RS-232 drivers opens.

Note This library contains two sections, composite and conventional.

2 Serial Communications Support

2-8

] Library: xpclib/R5232 _ ol x|

File Edit WYiew Formatb Help

Composite drivers

o
ASCI ASCI RE232
>{1 Encode E'F +:' Decode ! }> +:' State %E
ASCIl Encode ASCIl Decode RS5232 State

Quatech Mainboard Diamond Commiech
F FFO o FIFO
Read wirite
FIFD macd FIFO write
Fro ! g FAFO T
Read HORS 5 Read BINARY;
FIFQ ASCI mad FIF bin read

Conventional drivers [Dbzalete]

RE232
Mainboard
Setup

Sy nchmnous‘\s nchonous Binary
RE232 ¥ ¥ v
Mode Mode

Rs232

Mainboard 1.0 compatible
Setup

Setup

Alternatively, you can access the xPC Target block library from the Simulink
Library Browser. In the Simulink window, and from the View menu, click

Show Library Browser. In the left pane, double-click xPC Target, and then
click RS232.

Drag and drop an ASCII Encode block to your Simulink model. This block
encodes input for the RS-232 Send Receive block.

Configure this block.

Drag and drop an ASCII Decode block to your Simulink model. This block
decodes output from the RS-232 Send Receive block.

Configure this block.
Double-click the Mainboard group block.

Depending on your port pair configuration, drag and drop one or two
Baseboard RS-232 Send/Receive blocks to your Simulink model.

xPC Target RS-232 and 422 /485 Drivers (Composite)

9 Double-click the Baseboard RS-232 Send/Receive block.

10 Configure this block. Pay particular attention to the Parameter group
Board Setup entry.

11 Add a Signal Generator and Target Scope block.

12 From the Simulink Library Browser, select Sinks. Depending on your
configuration, drag and drop one or more Terminator blocks. Connect this
block to the unused RCV1 port to suppress unused port messages.

13 From the Simulink Library Browser, select Sources. Depending on your
configuration, drag and drop the Ground block. Connect this block to the
unused XMTS3 port to suppress unused port messages.

Your model should look similar to one of the following figures. The first
figure shows a single-block model. This model uses the Com1/Com3 port pair.
The second figure shows a two-block model. This model uses two sets of
Custom port pairs.

E!r5232mainhoard_model O] x|

File Edit Wiew Simulation Format Tools Help

h

oooo ASGI
1 Encode o

HmT1 RCVA

Teminator

Signal ASCI Encode EBazeboard
Gienemtor R5232
Send Receive
ASCH Tamet Scope
-
E—PXMTS RCV3 - [Decode 1 [a1
Gmound
ASCIH Decode

Easeboard Seope (G

Seral

2-9

2 Serial Communications Support

mr5232mainhoard_mode|2h O] x|

File Edit Wiew Simulation Format Tools Help

ooon ASCI B
1 Ensode] BT RCWA
Sinal ASCIl Encode Basaboard rEmnaer
Gienemtor R5232
Send Receive
= —>3]
Ground Teminatorl
Easeboard
Saral
ASGCH Tamet Scope
- -
ATz RGVE Decode Id: 1
Gmund2
Baszboard ASCI Decode
RS232 Soope IXPC)
Send Receine
— =
Gmoundl Temninato 2
Baszboad
Seral

14 Double-click a Baseboard RS232 Send Receive block. Enter values to
configure the port(s) on the target PC for this board.

For example, if the target PC is connected to COM1, your Send Receive block
dialog box should look similar to the following figure. Note, this is a dynamic
dialog box that changes depending on the Parameter group selection.

2-10

xPC Target RS-232 and 422 /485 Drivers (Composite)

Block Parameters: Baseboard Serial |

—RS232 Send Receive [mask] [link]

Bazehoard
R5232 Send Receive Subsystem

— Parameters
Farameter group: I Board Setup j
Configuration: (I aiae e

QK I Cancel Help | Apply |

For more information on entering the block parameters, see “Send/Receive
Blocks” on page 2-30.

15 Click OK. The Send Receive block dialog box dialog box closes.

Your next task is to build and run the target application.

Building and Running the Target Application
(Composite)
xPC Target and Real-Time Workshop® create C code from your Simulink

model. You can then use a C compiler to create executable code that runs on
the target PC.

After you have added the RS-232 blocks for the main board to your Simulink
model, you can build your target application.

Note You cannot use a serial port to communicate between the host PC and
target PC with this example. You can only use COM1 if it is not already in use
for host-target communications. Additionally, if COM1 and COMS3 share an
interrupt, you cannot use COM3 if COM1 is already in use for host-target
communications.

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Build Model.

2-11

2 Serial Communications Support

2-12

2

In the MATLAB Command Window, type
+tg or tg.start or start(tg)

RS-232/422/485 Simulink Block Reference

xPC Target supports RS-232/422/485 communication with driver blocks in
your Simulink model.

This section includes the following topics:

“Signal Data Types” on page 2-12 — Describes signal data types that
composite drivers support.

“ASCII Encode/Decode” on page 2-16 — (Generic) Describes encoder and
decoder blocks. Encoders convert input signals for the send/receive
subsystem to ASCII strings. ASCII decoders parse the string from the
Send/Receive subsystem.

“FIFO Read/Write” on page 2-19 — (Generic) Describes FIFO read and write
blocks.

“RS232 State” on page 2-29 — (Generic) Monitors the hardware error state
information that is present in the output vector from all blocks.
“Send/Receive Blocks” on page 2-30 — Provides blocks for sending and
receiving.

“Modem Control” on page 2-44 — Controls the state of either or both of the
RTS and DTR output lines.

“Modem Status” on page 2-47 — Reads the states of the four input modem
control lines.

“RS-232/422/485 Internal Blocks and Subsystems” on page 2-49 — Provides
blocks to customize the RS-232/422/485 drivers.

Signal Data Types

Signals between blocks in composite drivers can be one of several basic data
types, 8-bit and 16- or 32-bit. Both of these types are structures.

8-bit data types are NULL-terminated strings that are represented as
Simulink vectors. The width is the maximum number of characters that can be
stored. In the following figure, M is the actual set of stored characters and N is
the maximum number of characters that can be stored.

xPC Target RS-232 and 422 /485 Drivers (Composite)

‘4 M A unused values
n[e[L]L[o[wlo[r]L]o]o] /

< N -

This string has 11 characters terminated with a NULL byte (0). This data type
cannot contain a NULL byte as part of the real data.

16- and 32-bit data types use the first element of the vector as a count of the
valid data. In the following figure of a 16-bit data type, C is the count of the
valid data, N is the width of the vector.

undefined values

0O HIO E|O L|lO L|O O

C
}<—>| unused and
|
5
|
-

These serial blocks interpret each entry in the vector as a single character. The
low-level hardware Send block writes the low-order byte of each entry to the
UART. The 16- and 32-bit data types allow the embedding of any 8-bit data
value, including 0.

The 8-bit data type is most useful with the ASCII Encode and Decode blocks.
The 16- and 32-bit data types are most useful for binary data streams.

Defining the Commtech Fastcom Baud Rate

The Commtech Fastcom 422/2-PCI board can handle baud rates up to 1.5
megabaud. To configure a baud rate for the board, you need to set the following
parameters:

® Clock Bits in the Fastcom 422/2-PCI Send Receive block with the
Parameter group parameter set to Board Setup

2-13

2 Serial Communications Support

2-14

¢ Baud Divisor in the Fastcom 422/2-PCI Send Receive block with the
Parameter group parameter set to Basic Setup

The Fastcom 422/2-PCI board has two serial channels, each of which has an
independent counter (baud clock). A master clock generator, which has a phase
locked loop, controls the master clock for both serial channels. The master clock
generates a maximum baud rate for both channels. The block determines the
actual baud rate of a channel by dividing the maximum baud rate from the
master clock by the baud rate divisor (n).

Desired frequency /n Baud Clock
Maximum
Master clock baud rate
with phase
locked loop Channel 1
a, b /n Baud Clock
P

Channel 2

Fastcom 422-2 PCI Board

To correctly set the block parameters for this board, choose a maximum baud
rate, as follows. This procedure assumes that both channels require different
baud rates. Determine a common base clock that can be divided to produce the
required baud rates for both channels, as follows:

xPC Target RS-232 and 422 /485 Drivers (Composite)

1 Inthe MATLAB command window, type a command like the following. With
a desired frequency (for example, 1.5e6) as the desired input, the
fc422mexcalcbits utility calculates parameter values that you can use to
configure the board rate for your board.

[a b df] = fc422mexcalcbits(1.5€e6)

This command returns three values.

a = 12199144
b = 24
df = 1500000

2 Examine the df value. The df value is the actual frequency the board will be
able to attain compared to your desired frequency. If the actual attainable
frequency is not accurate enough, you might want to try another frequency.
In this example, the board can match the desired frequency of 1500000
(1.5e6).

3 Enter the first two values in the Clock Bits parameter of the Fastcom
422/2-PCI Send Receive block with the Parameter group parameter set to
Board Setup.

E Function Block Parameters: Fastcomm 422/2-PCI x|
—R5422/485 Send Receive [mazk] [link)

Q5 C-200/300
[Quatech
RS5422/485 Send Receive Subsystem

—Parameters

Parameter group: I Board Setup LI
IRE number:

10

Clock. Bitz [12133144 24] = 1. 5MB aud bax):

|[12133144 24

Slat:

|1

ok LCancel Help Apply

2-15

2 Serial Communications Support

2-16

After you define a maximum baud rate, you can set a unique baud rate for each
channel by choosing a different baud rate divisor for each channel. For
example, you can have Channel 1 have a baud rate of 750000 (1500000/2) and
Channel 2 have a baud rate of 1500000 (1500000/1). To set Channel 1 to have
a baud rate of 750000, with the Fastcom 422/2-PCI Send Receive block with the
Parameter group parameter set to Basic Setup, set

® Port to modify to 1

¢ Baud Divisor to 2

Note For very slow baud rates (less than 30000), you must use the Baud
Divisor parameter to achieve the desired baud rate.

ASCIl Encode/Decode

The ASCII Encode block generates a UINTS8 output vector that contains a
NULL-terminated string based on a printf like format string and data on the
input ports. The dialog box for the RS-232 ASCII Encode block contains the
following fields:

Parameter Description

Format string Enter a printf like format string. Each format
specifier such as %d is replaced by the converted
value that is present on the corresponding input
variable. Acceptable format specifiers are %c, %d, %1i,
%0, %U, %X, %e, %T, and %g. These follow the normal
description for printf.

Number of Enter the number of input ports to this block. The
variables value on each port is inserted into the output string
with the format specified in Format string.

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameter Description

Max output string Enter the maximum allowed length of the converted

length string, in bytes. The block allocates enough memory
to support this length for the output port. When
selecting this length, take into account the NULL
termination on the string.

If the converted string exceeds this length, the block
returns an error and does not write that string to the
output port.

Variable types Enter one of the following: {'double'}, {'int8'},
{'uint8'}, {'int16}, {'uint16'}, {'int32'}, and
{'uint32'}. The default is {'double'}. This
parameter specifies the Simulink data types allowed
for the input ports. A cell vector with the same
number of elements as specified in Number of
variables can specify a different data type for each
input port. A single element is replicated. For
example,

nvars=3
{ } — All three inputs are doubles.
{'uint8'} — All three inputs are uints.

{'uint16', 'double', 'uint8'} — There are three
inputs: the first is a uint16, the second is a double,
and the third is a uints.

The ASCII Decode block parses an input vector according to a format specifier
similar to scanf, and makes converted values available to a Simulink program.
The input vector to the ASCII Decode block can be either 8-bit or 16-bit and

signed or unsigned. If the data format is 16-bit, the ASCII Decode block ignores

2-17

2 Serial Communications Support

the upper eight bits of each entry. The dialog box for the RS-232 ASCII Decode
block contains the following fields:

Parameter Description

Format string Enter a scanf like format string. Each format
specifier such as %d needs to match a corresponding
part of the input vector. Literal strings in the format
need to match the first character plus the number of
characters. Acceptable format specifiers are %c, %d,
%1, %0, %U, %X, %e, %f, and %g. These follow the normal
description for scanf.

Number of Enter the number of output ports for this block. For
variables example,

If Format string has the value of %xmore text%x
and the input vector for the block has
cdmabcdefgh90, you must specify the value of the
Number of variables parameter as 2.

The first variable is assigned the value 0xcd. Next,
the string mabcdefgh is considered a match to more
text because

¢ The first character for both strings is m.

® Both strings have the same number of characters.

2-18

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameter

Description

Variable types

The second variable is then assigned the value 0x90.
Note that the string mabcdefgh does not have to
match exactly the value of Format string. This
behavior is different from that for scanf, which
requires an exact match.

Enter one of the following: {'double'}, {'int8'},
{'uint8'}, {'int16}, {'uint16'}, {'int32'}, and
{'uint32'}. The default is {'double'}. This
parameter specifies the Simulink data types allowed
for the output ports. A cell vector with the same
number of elements as specified in Number of
variables can specify a different data type for each
output port. A single element is replicated. For
example,

nvars=3
{ } — All three outputs are doubles.
{'uint8'} — All three outputs are uints.

{'uint16', 'double', 'uint8'} — There are three
outputs: the first is a uint16, the second is a double,
and the third is a uints.

FIFO Read/Write

This section describes the FIFO Read and Write blocks. Of particular note are
the FIFO Read blocks, of which there three. Use the following guidelines when

using these blocks:

¢ Simple data streams — Use the FIFO Read block to read simple data
streams. An example of a simple data stream is one that has numbers,
separated by spaces, and that is terminated by a newline. The FIFO Read
block is a simple block that can easily extract these numbers.

e More complicated data streams — Use the FIFO Read HDRS and FIFO
Binary blocks for more complicated data streams. A more complicated data
stream can be one that contains headers, messages of varying lengths, or

2-19

2 Serial Communications Support

2-20

messages with no specific terminators. A message header consists of one or
more character identifiers at the beginning of a message that specify what
data follows. ASCII messages normally have a variable length and a
terminator. Typically, all messages of a particular device use the same
predefined terminator. Binary messages are normally of fixed length with no
specific terminator.

The FIFO Read HDRS or FIFO Binary blocks are also useful to work with
devices that can send different messages at different times.

All three FIFO read block types need their input to be of type serialfifoptr,
which is output from F type Send Receive subsystems.

The following are examples of when can use the FIFO read blocks.

® For an instrument that sends a string like the form
<number> <number> ... <CR><LF>

use the simple FIFO Read block to read the message. Configure the FIFO
Read block Delimiter parameter for a line feed (value of 10).

xPC Target RS-232 and 422 /485 Drivers (Composite)

E! Function Block Parameters: FIFO read

—Aszpnchronous FIFO Block: reader [mazk)] [link]
FIFO read

—Parameters

t aximum read size:

[1024

Finirmurm re.ad size:

1
¥ Fead to delimiter;

Delimiter;

1

Dutput vector twpe: | 8 bit uint Aull terminated
[Max and Min read size ports:
[~ Enable passthrough:

SampleTime:

joom

LCancel |

Help | Apply |

You should then connect the output to an ASCII Decode block with a format
that separates the numbers and feeds them to the output ports.

¢ For an instrument that can send one of a number of different messages, and
each message begins with a different fixed string, use the FIFO Read HDRS
block. For example, a digital multimeter connected through an RS-232 port,
might send a voltage reading and an amp reading with messages of the

following format:

volts <number> <CR><LF>
amps <number> <CR><LF>

Configure the FIFO Read HDRs block Header parameter for the volts and
amps headers, in a cell array. Also configure the Terminating string
parameter for carriage return (value of 13) and line feed (value of 10).

2-21

2 Serial Communications Support

=] Function Block Parameters: FIFD ASCII read il
—bazunchronous FIFQ Block: reader [mask) (link]
FIFO read multiple headers
—Parameters
Header:
I{'volts','amps'}i
Terminating string:
fz10]
Output behavior: I Hold last output if no new data LI
" Enable input;
I aimum read size:
{1024
Output wector bppe: | 8 bit uint null terminated ;I
SampleT ime:
fo.m
0K I LCancel | Help | Apply |

You should then connect the output to multiple ASCII Decode blocks, one for
each header and message. See the xpcserialasciitest and
xpcserialasciisplit models in xpcdemos for examples of how to use this
block in a model.

® For an instrument that sends a binary message, you typically know the
length of each full message, including the header. Configure the FIFO Read
Binary block Header parameter for the headers of the message, in a cell
array, and the Message Lengths parameter for the message lengths. See the
xpcserialbinarytest and xpcserialbinarysplit models in xpcdemos for
further examples of how to use this block in a model.

FIFO Read/Write. The FIFO Read block is the read side of a FIFO read/write
pair. There are two modes for this block:

¢ If Read to delimiter is checked, this block only reads elements if the chosen
delimiter is found in the FIFO. If the delimiter has not yet been written to
the write side of this FIFO, the block returns a zero length vector, as

2-22

xPC Target RS-232 and 422 /485 Drivers (Composite)

determined by the data type. If the delimiter is found, the block returns
elements up to and including the delimiter in the output vector. Selecting
this check box cause the block to perform ASCII reads.

¢ [f Read to delimiter is not checked, this block returns a number of elements
between Minimum read size and the smaller of the number of elements
currently in the FIFO and Maximum read size. Selecting this check box
cause the block to perform binary reads.

The dialog box for the RS-232 FIFO Read block contains the following fields:

Parameter

Description

Maximum read
size

Minimum read
size

Read to delimiter

Delimiter

Enter the largest desired read size in bytes. This
parameter specifies the width of the output vector
and the maximum number of elements to return. See
Output vector type for more information about data
formats. This value is always the absolute maximum
read size, whether or not the Max and Min read size
ports check box is selected.

Enter the smallest desired read size in bytes. The
FIFO must contain at least this number of elements
before any elements will be returned. If you select
the Max and Min read size ports check box, this
value is superseded by the external signals.

Select this check box to enable the return of element
sets that terminate with the Delimiter value. Use
this parameter when working with character-based
elements.

Enter the decimal value for an 8-bit input
terminator. This parameter specifies the value on
which a FIFO read operation should terminate. It
works with the Read to delimiter parameter. By
default, this block looks for a carriage return. It only
returns characters when one is found. For reference,
the decimal value of a carriage return is 13, a line
feed is 10.

2-23

2 Serial Communications Support

Parameter

Description

Output vector
type

Max and Min
read size ports

Enable
passthrough

SampleTime

From the list, select count+32 bit int, count+32
bit uint, count+16 bit int, count+16 bit uint, 8
bit int null terminated, or 8 bit uint null
terminated. This parameter specifies the output
vector type. The 8-bit data types produce a null
terminated string in the output vector. For 16- and
32-bit data types, the first element contains the
number of elements to expect in the rest of the
output vector.

Select this check box to enable the maximum and
minimum input ports. When this check box is
selected,

® The value from the maximum input port is the
maximum number of characters to be removed
from the FIFO. Note that if this number exceeds
the value of Maximum read size, the block
disregards the value from the maximum input port
and takes the value of Maximum read size as the
maximum number of characters to be removed
from the FIFO.

The value from the minimum input is the
minimum number of characters the FIFO must
contain before any elements can be returned. This
value supersedes the value set with the Minimum
read size parameter.

Select this check box to pass the maximum read
input through to the passthrough output.

Base sample time or a multiple of the base sample
time.

2-24

xPC Target RS-232 and 422 /485 Drivers (Composite)

The following are some examples of how you can set up the FIFO Read block:

¢ In the transmit side of the interrupt service routine, the maximum input port
receives a value of 0 if the interrupt reason is not an empty hardware FIFO,
and the hardware FIFO size if the hardware FIFO is empty. The minimum
input port receives the constant value of 1.

On the receive side, the typical case with ASCII data has the minimum and
maximum input ports disabled. The Read to delimiter parameter check
box is selected and the Delimiter parameter has the value of carriage return
or line feed. The value of the Maximum read size parameter is large (along
the order of the FIFO size) and the value of Minimum read size parameter
is 1. In this form, the driver acts like a nonblocking read line.

® An alternate receive-side configuration for fixed-length binary blocks of data
has the value of the Maximum read size and Minimum read size
parameters set to the fixed length of the block. The Read to delimiter
parameter is not selected.

The FIFO Write block is the write side of a FIFO read/write pair. The dialog
box for the RS-232 FIFO Write block contains the following fields:

Parameter Description

Size Enter the number of elements that can be held in the
FIFO at any one time. If a write operation to the
FIFO causes the number of elements to exceed Size,
an error occurs.

Input vector type From the list, select count+32 bit int, count+32

bit uint, count+16 bit int, count+16 bit uint, 8
bit int null terminated, or 8 bit uint null
terminated. This parameter specifies the input
vector type. The 8-bit data types need a null
terminated string in the output vector. For 16- and
32-bit data types, the first element contains the
number of elements to expect in the rest of the input
vector.

2-25

2 Serial Communications Support

2-26

Parameter

Description

Data present
output

SampleTime

ID

Select this check box to create a Boolean output that
is true if data is present in the FIFO. The transmit
side of the send/receive subsystem uses this output.
This output is given to the Enable TX block, which
enables the transmitter buffer empty interrupt.

Base sample time or a multiple of the base sample
time.

Enter a user-defined identifier for overflow
messages.

FIFO Read HDRS. The FIFO Read HDRS block identifies and separates ASCII
data streams that have embedded identifiers. The data following a particular
header might have varying lengths, but all have a common termination marker
such as <CR><LF>, While you can attain this same functionality with the
sample FIFO Read block, doing so requires a complicated state machine.

The xpcdemos directory contains the following demos that illustrate how to use
the FIFO Read HDRS block: xpcserialasciitest and xpcserialasciisplit.

The dialog box for the RS-232 FIFO Read HDRS block contains the following

fields:
Parameter Description
Header Enter the headers that you want the block to look for
in a block of data from the FIFO. Enter each header
as an element in a cell array.
Terminating Enter the terminating string for the data. Enter as
string many characters as needed to define the end of

string. This is typically one or two characters.

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameter

Description

Output behavior

Enable input

Maximum read
size

Output vector
type

SampleTime

From the list, select the behavior of the block if the
FIFO has no new data. Select Zero output if no new
data if you want the block to have no output if there
is no new data. Select Hold last output if no new
data if you want the block to keep the output from
the last FIFO message.

Select this check box to turn on a new input that
takes Boolean signals that enable or disable the
read.

Enter the largest desired read size in bytes. This
parameter specifies the width of the output vector
and the maximum number of elements to return. See
Output vector type for more information about data
formats.

From the list, select count+32 bit int, count+32
bit uint, count+16 bit int, count+16 bit uint, 8
bit int null terminated, or 8 bit uint null
terminated. This parameter specifies the output
vector type. The 8-bit data types produce a null
terminated string in the output vector. For 16- and
32-bit data types, the first element contains the
number of elements to expect in the rest of the
output vector.

Base sample time or a multiple of the base sample
time.

FIFO Read Binary. The FIFO Read Binary block reads multiple binary headers
from a FIFO. This block identifies and separates data by finding unique byte
sequences (headers) that mark the data. Each header indicates the start of a
fixed length binary message.

The xpcdemos directory contains the following demos that illustrate how to use
the FIFO Read HDRS block: xpcserialbinarytest and
xpcserialbinarysplit.

2-27

2 Serial Communications Support

2-28

Parameter

Description

Header

Message Lengths

Output behavior

Enable input

Maximum read
size

Enter the headers that you want the block to look for
in a block of data from the FIFO. Enter each header
as an element in a cell array either as a quoted
string or a concatenation with char(val) for
non-printable byte patterns.

Enter the message length of each byte of data as
bytes of data. Include the header in the length.

From the list, select the behavior of the block if the
FIFO has no new data. Select Zero output if no new
data if you want the block to have no output if there
is no new data. Select Hold last output if no new
data if you want the block to keep the output from
the last FIFO message.

This check box enables or disables a FIFO read.
Select this check box to turn on a new input that
takes Boolean signals that enable or disable the
read.

Enter the largest desired read size in bytes. This
parameter specifies the width of the output vector
and the maximum number of elements to return. See
Output vector type for more information about data
formats.

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameter Description
Output vector From the list, select count+32 bit int, count+32
type bit uint, count+16 bit int, count+16 bit uint, 8

bit int null terminated, or 8 bit uint null
terminated. This parameter specifies the output
vector type. The 8-bit data types produce a null
terminated string in the output vector. For 16- and
32-bit data types, the first element contains the
number of elements to expect in the rest of the
output vector.

SampleTime Base sample time or a multiple of the base sample
time.

RS232 State

The RS232 State block monitors the board state information that is present in
the vector coming out of a receive port on a send/receive block.

The input data vector can be one of Int8, UInt8, Int16, or UInt16. If the input
vector is Int8 or UInt8, no error status is available and the Boolean outputs are
always false. If the input vector is Int16 or UInt16, the upper byte should
contain the error status bits from the UART.

This block accumulates errors over the whole input vector. An output error
state is true if it is true for any byte in the input vector.

The FIFO Hardware FIFO block puts the UART status in 16+32 bit data
streams. The RS232 State block looks at this status. Note that only the FIFO
Read block passes this status information to its output port.

2-29

2 Serial Communications Support

2-30

The dialog box for the RS-232 State block contains the following fields:

Parameter

Description

Overrun error
output

Parity error
output

Framing error
output

Break interrupt
output

Select this check box to retrieve overrun error
output. This output is true if the hardware FIFO in
the UART was filled at any time while a character in
the input vector was being received.

Select this check box to retrieve parity error output.
This output is true if any byte in the input vector has
incorrect parity.

Select this check box to retrieve framing error
output. This output is true if a framing error occurs
on any character in this vector. For example, a
framing error might occur if the baud rates between
the transmitter and receiver do not match.

Select this check box to retrieve break interrupt
output. A break interrupt output is not an error, but
the UART treats it like an error state. The break
condition is detected if the serial line remains at
logic 0 (negative voltage) for more than one character
time.

Note Disconnecting the serial cable does not cause a break with some serial

port hardware.

Send/Receive Blocks

The dynamic dialog for these subsystem blocks allows you to perform basic
board setup and setup of send/receive data. You control parameter visibility
with the Parameter Group parameter and the port number.

There are two versions of this block, non-F and F (FIFO). All serial boards plus
the main board have these two versions. The primary difference is that the F
blocks bring the FIFO signal out of the subsystem. For example

xPC Target RS-232 and 422 /485 Drivers (Composite)

AMT1 ROV AMT1 FIFO
AMTZ ROVE NMT2 FIFO2
AMTZ ROVE XMT3 FIFO3
ESC-100 EsC-100
AMT4 ROV4 KMT4 _ FIFO4
Rezaz R5232
AT el R
= s FIFO QUT
AMTE ROVE XMTE FIFOG
AMTF ROVT XMT? FIFO7
AMTE ROVE XMTS FIFOS
ESC-100 ESC-100 F

® The non-F blocks have RCV outputs. These blocks have basic FIFO read
blocks inside the subsystem. These blocks are most useful for simple
character streams. These subsystem blocks generate output as an array of
packed integers (settable at 8, 16, or 32 bits) with characters in the lower
byte and received status information in the upper byte.

® The F blocks have FIFO outputs. These blocks give you greater flexibility
and allow you to use any one of the FIFO read blocks.

= FIFO Read block — A model that contains an F block in combination with
the FIFO Read block provides the same capability as the non-F block.

= FIFO Read HDRS and FIFO Read Binary — A model that contains an F
block in combination with a FIFO Read HDRS or FIFO Read Binary block
provides greater capability than the FIFO Read block. (See “FIFO Read
HDRS” on page 2-26and “FIFO Read Binary” on page 2-27 for details.)

Only one Send/Receive block can exist for each interrupt. All ports that use
that interrupt must be associated with that block.

For example, if you have four ports configured on the mainboard, COM1 and
COMS typically share an interrupt. In this case, COM1 and COM3 must then
share the same Send/Receive block. COM1 is also of note because you can use
it for host PC/target PC communication. If COM1 is the host PC/target PC link,
neither COM1 nor COMS3 can be used with this block as long as they share an
interrupt. The same is true for COM2 and COM4.

2-31

2 Serial Communications Support

2-32

Each F Send Receive has Board Setup and Basic Setup configuration
parameter options that are the same as their non-F Send Receive block
counterparts. To provide direct access to the board, these blocks also have a
FIFO Setup parameter option. The following descriptions do not distinguish
between the F and non-F blocks unless necessary.

The Parameter Group parameter allows you to choose which subset of
configuration parameters you want to modify.

Parameter Group — From the list, choose Board Setup, Basic Setup,
Transmit Setup, or Receive Setup. The visible set of parameters changes
according to your selection. The following screenshots reflect the Send Receive
block for the Quatech ESC-100.

Parameter Group: Board Setup

—ESC-100 R5232 Send Receive [maszk] [link]

ESC-100
Quatech
RS232 Send Receive Subzystem

—Parameters

Pararmeter group: | Board Setup LI
IRE number:

|7
Slat:

i

Ok LCancel Help Apply

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameters

Description

Configuration
(Mainboard)

IRQ number
(Quatech,
Commtech)

Clock Bits
(Commtech)

From the list, choose combinations of port pairs
(Com1/none, Com2/none, Com1/Com3, Com2/Com4,
none/Com3, none/Com4, or Custom). This parameter
specifies the ports for which you are defining
transmit and receive. A Custom port is one that does
not match the existing combinations of port pairs.
For example, you can set the IRQ and two addresses
or, if one of the ports is not used, set that to 0.

Enter the number of the interrupt request line for
this board. If you do not know the interrupt request
line number for this board, at the MATLAB

Command Window, enter
getxpcpci

This command displays all the PCI interfaces
currently attached to the target PC. From that
display, find the instance of the board controlled by
this block. Each board uses a unique interrupt
request line number.

For Emerald-MM, set this to the IRQ chosen by
jumpers on the board. Set all four ports to the same
IRQ.

For Emerald-MM-8, this block setting programs the
board IRQ.

(Diamond) Not all IRQ values work in all target PC
machines. You should experiment to find a working
combination.

Enter the number of click bits to control a clock
generator common to both channels. This parameter
adjusts the master clock of both channels.

2-33

2 Serial Communications Support

2-34

Parameters

Description

Slot (PCI boards)

If only one board of this type is physically present in
the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically
present in the target PC, enter the bus number and
the PCI slot number of the board associated with this
driver block. Use the format [BusNumber,
SlotNumber]. To determine the bus number and the
PCI slot number, type

getxpcpei

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameters

Description

Base address
(Diamond
Emerald-MM-8)

First port address
(Diamond
Emerald-MM)

Enter the base address of the board that you are
setting up. This is the address of the configuration
register on the board. The first port address
referenced in Modem Control and Modem Status
blocks is offset 0x10 from the configuration register
address, and each subsequent port address is offset
0x8 from that.

You must set the configuration register address on
the board with a jumper. You can set the
configuration register address to one of the following
addresses: 0x100, 0x140, 0x180, 0x1c0, 0x200, 0x240,
0x280, 0x2c0, 0x300, 0x340, 0x380, or 0x3¢c0. Note
that xPC Target assigns successive 8 byte addresses
to the eight UARTS even though the hardware allows
random placement.

Be sure that these addresses do not conflict with the
COM port addresses listed in “Adding RS-232
Blocks” on page 2-6. Note that if you set the
configuration register address to 0x2c0, it conflicts
with COM2. If you set the configuration address to
0x3c0, it conflicts with COM1.

From the list, select the first port address for the
board. This address is the first of four port addresses
for the Emerald-MM board. You must initially set
this address on the board with a jumper. The
remaining three addresses follow consecutively in
increments of 0x8. Be sure that these addresses do
not conflict with the COM port addresses listed in
“Adding RS-232 Blocks” on page 2-6.

2-35

2 Seiial Communications Support

Parameter Group: Basic Setup

—ESC-100 R5232 Send Receive [maszk] [link]
ESC-100
Quatech
RS5232 Send Receive Subspstem

—Parameters
Parameter group: I Bazic Setup LI
Part ta maodify: I 1 LI
Baud rate: I 13200 LI
Parity: I MHane LI
D ata bits: I 3 LI
Stop bits: I 1 LI
Hardwsare fifo size: I B4 deep LI
Receive fifa interrupt level: I half full LI
¥ Auto RTS/CTS:

oK LCancel Help | Apply |

2-36

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameters

Description

Port to modify

Baud Divisor
(Commtech)

Baud rate
(Mainboard,
Quatech,
Diamond)

Parity

Data bits

Stop bits

From the list, choose a port. The Port to modify
parameter specifies the port for which you want to
view or modify the parameters.

For Baseboard drivers, the port is the Simulink block
port, where the upper port is 1 and the lower port is
2. For all other drivers, the port number corresponds
to the channel number.

Enter a divisor integer. The block determines the
actual baud rate for a particular channel by dividing
the maximum baud rate by this divisor. This number
can be different for each channel.

From the list, choose a baud rate.

From the list, choose None, Even, 0dd, Mark, or Space.
This parameter defines the parity.

From the list, choose either 5, 6, 7, or 8 to select the
number of bits per character.

From the list, choose either 1 or 2 to define the
number of stop bits for the port. Most modern
hardware works fine with a character stream that
uses single (1) stop bits.

2-37

2 Serial Communications Support

2-38

Parameters Description
Hardware From the list, choose either 64 deep, 16 deep, or 1
FIFO size deep. This parameter specifies the size of the FIFO
(Quatech, in the UART. The Hardware FIFO size parameter
Diamond) affects both the receive and transmit FIFOs. For
example, specifying a FIFO size of 64 bytes results in
fewer interrupts. Fewer interrupts can allow more
processing to occur in the model.
The types of UARTSs include
16450 — Maximum 1 byte depth
16550 — Maximum 16 byte FIFO depth
16750 — Maximum 64 byte FIFO depth
Receive FIFO From the list, choose 1, quarter full, half full, or

interrupt level

almost full. This parameter specifies the number of
characters in the Receive FIFO before an interrupt
occurs. Receive interrupts occur at least as often as
this parameter specifies.

If a gap of at least 4 character times, the span of four
characters, occurs in a data stream, the UART
requests an interrupt for the receiver. The UART
requests an interrupt regardless of the value of
Receive FIFO interrupt level. If there is at least
one character in the hardware FIFO, an interrupt is
signaled.

(Commtech) The Fastcom 422/2-PCI hardware FIFO
is fixed at 128 bytes for receive and transmit. By
default, this parameter is set to 64. In general, leave
this value at 64. If receive latency is critical, you
might want to reduce this value to the size of your
receive data packet.

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameters Description

Auto RTS/CTS Select this check box to enable the hardware-based

(RS-232 handshake for flow control. This RT'S/CTS

boards) handshake feature of the UART provides a reliable
way to prevent loss due to hardware FIFO overflow.
Because of the large 64 byte FIFO in the hardware,
flow control that is based on software control in the
interrupt service routine can have problems. In most
cases, the interrupt service routine executes quickly
enough to empty the hardware FIFO. However, if
you get hardware FIFO overruns, select this check
box. Doing so causes the hardware to stop sending
data.

Assert on From the list, select None, RTS, or DTR to specify the

transmit state of the RTS or DTR line. The block asserts the

(RS-422/485 selected line upon transmission.

boards)

Parameter Group: Transmit Setup

—ESC-100 R5232 Send Receive [maszk] [link)

ESC-100
Quatech

RS232 Send Receive Subzystem

—Parameters
Parameter group: I Tranzmit Setup LI
Piort tor modify: I 1 ;I
Tranzmit software fifo size:
1024
Tranzmit fifo data twpe; I 3 bit vint null terminated ﬂ
LCancel Help | Apply |

2-39

2 Serial Communications Support

2-40

(Non-F Send Receive blocks)

Parameters Description

Port to modify From the list, choose a port. The Port to modify
parameter specifies the port for which you want to
view or modify the parameters.

Transmit Enter the transmit software FIFO size, in bytes.

software FIFO This parameter specifies the size of the software

size FIFO used to buffer transmitted characters.

Transmit FIFO From the list, choose count+32 bit int, count+32

data type bit uint, count+16 bit int, count+16 bit uint, 8

bit int null terminated, or 8 bit uint null
terminated. This parameter specifies the data type
of the transmitter. The 8-bit data types require a
NULL-terminated string in the input vector.

The 16- and 32-bit data types reserve the first full
element to contain the number of elements to expect
in the rest of the input vector. Only the low-order
byte of each data element is sent. Setting this data
type allows a wider data type to hold the bytes. If the
data stream needs to include a NULL byte, you must
select one of the 16- or 32-bit data types.

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameter Group: Receive Setup

E Block Parameters: ESC-100

2|

—ESC-100 RS5232 Send Receive [mazk] (link]

ESC-100
[Quatech
R5232 Send Receive Subsystem

—Parameters

Parameter group: I Receive Setup

Prort bo modify: I 1

Receive software fifo size:

Ll Lo

J1024

Receive maximum read:

[1024

Receive minimurm read:

1
¥ Fead to delimiter;

Delimiter;

E

Receive data ype: | count+1E bit uint

Receive SamplaTime:

K

ak. LCancel Help

Apply

2-41

2 Serial Communications Support

2-42

(Non-F Send Receive blocks)

Parameters

Description

Port to modify

Receive software
FIFO size

Receive
maximum read

Receive
minimum read

Read to delimiter

Delimiter

From the list, choose a port. The Port to modify
parameter specifies the port for which you want to
view or modify the parameters.

Enter the size of the receive software FIFO, in bytes.
This parameter specifies the size of the software
FIFO to buffer characters between interrupt service
and periodic execution.

Enter the maximum number of elements that you
want returned by a single call to this block. This
parameter is also used to set the output vector width.
If the Read to delimiter check box is selected, the
maximum number of characters read is limited by
this parameter even if the delimiter is not found.

Enter the minimum number of characters to read. If
the FIFO does not contain at least this number of
characters, the output vector is empty.

Select this check box to have this block return all
characters in the FIFO up to and including the
specified delimiter. If the block does not find the
delimiter in the FIFO, it returns no characters.

Note that if the buffer has hardware observed errors,
such as framing errors, characters are returned
regardless of the presence of the delimiter. This
special case helps diagnose errors such as
mismatched baud rates.

Enter the numeric value of the character that is the
message delimiter. Any value from 0 to 255 is valid.
The common case looks for 10 (line feed) or 13
(carriage return).

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameters

Description

Receive data type

Receive
SampleTime

From the list, select count+32 bit int, count+32
bit uint, count+16 bit int, count+16 bit uint, 8
bit int null terminated, or 8 bit uint null
terminated. This parameter specifies the data type
of the receiver. The 8-bit data types produce a null
terminated string in the output vector. For 16- and
32-bit data types, the first element contains the
number of valid elements in the rest of the output
vector.

For 8-bit data types, only the character data is in the
output vector, and a NULL terminator is appended.
The 16- or 32-bit wide data types cause the error
status from the UART to be placed in the second byte
of each data element. (The error status contains the
parity, overrun, framing, and break bits.) The
character data is in the bottom eight bits of each
element; the first element of the vector contains the
number of data elements that follow.

Base sample time or a multiple of the base sample
time.

Parameter Group: FIFO Setup
(All F Send Receive blocks)

Parameters

Description

Port to modify

Transmit
software FIFO
size

From the list, choose port 1 or 2. The Port to modify
parameter specifies the port for which you want to
view or modify the parameters.

Enter the transmit software FIFO size, in bytes.
This parameter specifies the size of the software
FIFO used to buffer transmitted characters.

2-43

2 Serial Communications Support

2-44

Parameters Description
Transmit FIFO From the list, choose count+32 bit int, count+32
data type bit uint, count+16 bit int, count+16 bit uint, 8

Receive software
FIFO size

bit int null terminated, or 8 bit uint null
terminated. This parameter specifies the data type
of the transmitter. The 8-bit data types require a
NULL-terminated string in the input vector.

The 16- and 32-bit data types reserve the first full
element to contain the number of elements to expect
in the rest of the input vector. Only the low-order
byte of each data element is sent. Setting this data
type allows a wider data type to hold the bytes. If the
data stream needs to include a NULL byte, you must
select one of the 16- or 32-bit data types.

Enter the size of the receive software FIFO, in bytes.
This parameter specifies the size of the software
FIFO to buffer characters between interrupt service
and periodic execution.

Modem Control

The Modem Control block controls the state of either or both of the RTS and
DTR output lines on the specified port.

This block requires an input of type double. If the input value is greater than
0.5, the block asserts the RTS or DTR control bit to true and the output goes to
a positive voltage. If the value is less than or equal to 0.5, the block asserts the
RTS or DTR control bit to false and the output goes to a negative voltage. If
RTS or DTR is not selected, the corresponding output is not changed.

xPC Target RS-232 and 422 /485 Drivers (Composite)

The dialog box for the Modem Control block contains the following fields:

Parameter

Description

Port (Quatech,
Commtech)
RTS

DTS

Port (Diamond)

First port address
(Diamond)

From the list, choose a port. The Port parameter
defines the port to configure for this driver block.

Select this check box to control the RTS line for this
board.

Select this check box to control the DTR line for this
port.

From the list, choose a port. The Port parameter
defines the port to configure for this driver block.

For Emerald-MM, this value should be the same as
the First port address parameter value you select in
the Parameter Group: Board Setup dialog of the
Send/Receive block. See the Diamond user’s manual
documentation for the appropriate jumper settings.

For Emerald-MM-8, this parameter contains a value
based on the Base address value of the
configuration register in the Parameter Group:
Board Setup dialog of the Send/Receive block. See
the Diamond user’s manual documentation.

2-45

2 Serial Communications Support

2-46

Parameter Description
Configuration From the list, choose a port. This parameter specifies
(Mainboard) the port whose input modem control line states you

Slot (PCI boards)

want to read.

Normally, the ports are set to the following:

COM1 — 0x3F8
COM2 — 0x2F8
COM3 — 0x3E8
COM4 — 0x2E8

A Custom port is one that is set to an address other
than these.

If only one board of this type is physically present in
the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically
present in the target PC, enter the bus number and
the PCI slot number of the board associated with this
driver block. Use the format [BusNumber,
SlotNumber]. To determine the bus number and the
PCI slot number, type

getxpcpci

xPC Target RS-232 and 422 /485 Drivers (Composite)

Modem Status

The Modem Status block reads the state of the four input modem control lines.

This block has an output of type Boolean. If the input voltage is positive, the
output is true. If the input voltage is negative, the output is false.

Parameter

Description

Port (Quatech,
Commtech)

CTS
DSR
RI
DCD

Sample Time

Port (Diamond)

First port address
(Diamond)

From the list, choose a port. The Port parameter
defines the port to configure for this driver block.

Select this check box to monitor the CTS line.
Select this check box to monitor the DSR line.
Select this check box to monitor the RI line.

Select this check box to monitor the DCD line.

Base sample time or a multiple of the base sample
time.

From the list, choose a port. The Port parameter
defines the port to configure for this driver block.

This parameter specifies the first port whose input
modem control line states you want to read. Do not
change this value.

For Emerald-MM, this value should be the same as
the First port address parameter value you select in
the Parameter Group: Board Setup dialog.

For Emerald-MM-8, this parameter contains a value
based on the Base address value in the Parameter
Group: Board Setup dialog.

2-47

2 Serial Communications Support

2-48

Parameter Description
Configuration From the list, choose a port. This parameter specifies
(Mainboard) the port whose input modem control line states you

Slot (PCI boards)

want to read.

Normally, the ports are set to the following:

COM1 — 0x3F8
COM2 — 0x2F8
COM3 — 0x3E8
COM4 — 0x2E8

A Custom port is one that is set to an address other
than these.

If only one board of this type is physically present in
the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically
present in the target PC, enter the bus number and
the PCI slot number of the board associated with this
driver block. Use the format [BusNumber,
SlotNumber]. To determine the bus number and the
PCI slot number, type

getxpcpci

xPC Target RS-232 and 422 /485 Drivers (Composite)

RS-232/422/485 Internal Blocks and Subsystems

This section describes the internal blocks of the RS-232/422/485 boards.
Typically, the parameters in these blocks are controlled from the mask
parameters dialog for the send/receive subsystem in which they are used.

You might need to access these blocks if you need to modify the RS-232 Quatech
subsystems for your use.

Note Otherwise, do not use these blocks directly.

This section includes the following topics:

® “Setup Block” on page 2-49 — Sets up the interface characteristics for the
board.

¢ “Read Hardware FIFO Block” on page 2-51 — Reads characters from the
hardware FIFO in the UART.

¢ “Write Hardware FIFO” on page 2-53 — Writes the data from the input port
to the hardware FIFO in the UART for this port.

® “Read Int(errupt) Status” on page 2-55 — Reads the interrupt status for the
boards in the system.

® “Enable TX Interrupt” on page 2-57 — Enables the transmitter buffer empty
interrupt when data is present in the software FIFO.

¢ “Filter Interrupt Reason” on page 2-58 — Filters the output of the Read
Int(errupt) Status block.

® “Board Setup (Commtech) and Interrupt Check (Quatech)” on page 2-58 —
Checks for instances where the hardware IRQ differs from the software for
which it is listening.

Setup Block. A setup block is a subsystem block that sets up the interface
characteristics for the board.

For Quatech boards, this setup block is for one channel or port.

2-49

2 Serial Communications Support

2-50

The dialog box for the Setup block contains the following fields:

Parameters Description
Port (Quatech, From the list, choose a port. The Port parameter
Commtech) defines the port this driver block configures.

Baud Divisor
(Commtech)

Baud rate
(Mainboard,
Quatech,
Diamond)

Number of data
bits

Number of stop
bits

Parity

Fifo mode
(Mainboard,
Quatech,
Diamond)

Receive trigger
level

Enter a divisor integer. The block determines the
actual baud rate for a particular channel by dividing
the maximum baud rate by this divisor. This number
can be different for each channel.

From the list, choose a baud rate.

From the list, choose either 5, 6, 7 or 8 to define the
number of data bits for the port.

From the list, choose either 1 or 2 to define the
number of stop bits for the port.

From the list, choose None, Even, 0dd, Mark or Space.
This parameter defines the receive and transfer
parity.

From the list, choose 64 deep, 16 deep, or 1 deep.
This parameter sets the transmit and receive FIFO
depth. The UART can operate with a hardware FIFO
depth of 1 character (1 deep), 16 characters (16
deep), or 64 characters (64 deep).

From the list, choose 1, quarter full, half full, or
almost full. This parameter defines a trigger level
for a receive data available interrupt. When the
hardware FIFO reaches the level specified in this
parameter, the driver asserts the receive data
available interrupt.

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameters

Description

Enable auto
RTS/CTS

Base Address
(Mainboard, ISA,
or Diamond)

IRQ
(Diamond-MM-8)

Slot (PCI boards)

Select this check box to enable hardware-controlled
handshaking using the RTS and CTS modem control
lines. If this is not checked, no handshaking is done.

Enter the base address of the board that you are
setting up.

For Diamond-MM-8 boards, this block uses the base
address you enter for the Send/Receive block.

This field contains the value of the IRQ number
parameter from the Parameter Group: Board
Setup of the Send/Receive block.

For Emerald-MM-8, this block setting programs the
board IRQ.

If only one board of this type is physically present in
the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically
present in the target PC, enter the bus number and
the PCI slot number of the board associated with this
driver block. Use the format [BusNumber,
SlotNumber]. To determine the bus number and the
PCI slot number, type

getxpcpci

Read Hardware FIFO Block. The Read Hardware FIFO block reads characters
from the hardware FIFO in the UART. It then outputs those characters as the
low-order byte of an unsigned 32-bit integer vector with a width of 65. This
output vector is large enough to hold the maximum number of characters that
the hardware FIFO can hold. The first element of the vector specifies the
number of data elements in the remainder of the vector.

2-51

2 Serial Communications Support

If the input to the enable port (input port, labeled E) is not true, this block
outputs a 0 length vector. The following illustrates the vector.

}47 32 bits —»f‘/ data byte

Lo o | |

UART error
status

The UART error status can contain one of the following error values:

0x02 — Overrun error

0x04 — Parity error

0x08 — Framing error

0x01 — Break interrupt

The data byte ranges from 0 to 255.

The dialog box for the RS-232 FIFO Read block contains the following fields:

Parameter Description

Port (Quatech, From the list, choose a port. This block reads the
Commtech) hardware FIFO from this port.

Flush HW FIFO Select this check box to flush the hardware FIFO
on startup when the device starts up.

2-52

xPC Target RS-232 and 422 /485 Drivers (Composite)

Parameter

Description

Base address
(Mainboard, ISA
boards)

PCI Slot (PCI
boards)

Enter the base address of the UART for which you
want to read the hardware FIFO.

If only one board of this type is physically present in
the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically
present in the target PC, enter the bus number and
the PCI slot number of the board associated with this
driver block. Use the format [BusNumber,
SlotNumber]. To determine the bus number and the
PCI slot number, type

getxpcpci

Write Hardware FIFO. The Write Hardware FIFO block writes the data from the
input port (labeled E) to the hardware FIFO in the UART for this port. The
following pseudocode most accurately describes the behavior of this FIFO.

if (enable is false)

return
else
{
if (input data empty)
disable transmitter buffer empty interrupt
return
else
copy input data to HW FIFO
}

2-53

2 Serial Communications Support

2-54

The dialog box for the RS-232 FIFO Write block contains the following fields:

Parameter

Description

Base address
(Mainboard, ISA
boards)

Port

Assert on
Transmit
(RS-422/485
boards)

PCI Slot (PCI
boards)

Enter the base address of the UART for which you
want to write the hardware FIFO.

For Diamond-MM-8 boards, this block uses the base
address you enter for the Send/Receive block.

From the list, choose a port. This is the port that this
block writes data to.

Select None, RTS, or DTR. The board asserts either no
bit, the RTS bit, or the DTR bit in the modem control
register upon data transmission.

For half duplex operation, set the jumper on the
board to send either RTS or DTR signals to the
transmit enable gate. See the user’s manual
documentation specific to your board for further
information.

If only one board of this type is physically present in
the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically
present in the target PC, enter the bus number and
the PCI slot number of the board associated with this
driver block. Use the format [BusNumber,
SlotNumber]. To determine the bus number and the
PCI slot number, type

getxpcpei

xPC Target RS-232 and 422 /485 Drivers (Composite)

Read Int(errupt) Status. The Read Interrupt Status block reads the interrupt
status for the boards in the system. The output for this block is a vector with
one 32-bit element for each port. Each element contains two pieces of
information for that port, where the four bytes are

[0, 0, IIR, Reason]
The Read Interrupt Status block has signal output with the following format:

This output is a vector of integers. The values in the reason byte and their
definitions are

0 — This UART did not cause this interrupt.
1 — Receive characters are available.

2 — Transmit holding register is empty.

3 — Modem status has changed (ignored).

This second byte is the value read from the Interrupt Reason Register (IIR).
This register is specific to the 16450, 16550, and 16750 types of UARTSs. Several
bites in this register indicate the active hardware FIFO depth and the
maximum number of characters that can be written in the transmitter empty
interrupt handlers to the transmit hardware FIFO.

The dialog box for the Read Interrupt Status block contains the following fields:

Parameter Description

Base address 1 Enter the base address of the first UART for which
(Mainboard, ISA you want to read the interrupt status.

boards)

Base address 2 Enter the base address of the second UART for

(Mainboard, ISA which you want to read the interrupt status.
boards)

2-55

2 Serial Communications Support

2-56

Parameter

Description

PCI Slot (PCI
boards)

First to Fourth

port address
(Diamond-MM)

First to Eighth
port address
(Diamond-MM-8)

Interrupt status
address
(Diamond)

If only one board of this type is physically present in
the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically
present in the target PC, enter the bus number and
the PCI slot number of the board associated with this
driver block. Use the format [BusNumber,
SlotNumber]. To determine the bus number and the
PCI slot number, type

getxpcpei

These parameters contain the address of the port for
which you want to read the interrupt status.

Starting from the First port address parameter
value you select in the Parameter Group: Board
Setup dialog of the Send/Receive block, the
subsequent parameters contain the incremental port
addresses.

These parameters contain the addresses of the ports
for which you want to read the interrupt status.

Starting from the Base address parameter value in
the Parameter Group: Board Setup dialog of the
Send/Receive block, the subsequent parameters
contain the incremental port addresses.

This parameter contains the address for the
interrupt status. This parameter derives from the
configurations you define in the Parameter Group
dialog of the Send/Receive block.

xPC Target RS-232 and 422 /485 Drivers (Composite)

Enable TX Interrupt. The Enable TX Interrupt block enables the transmitter
buffer empty interrupt when data is present in the software FIFO.

Parameter

Description

Base address
(Mainboard, ISA
boards)

Port (Quatech,
Commtech)

PCI Slot (PCI
boards)

Enter the base address of the UART for which you
want to enable the transmitter buffer empty
interrupt.

From the list, choose a port. This parameter specifies
the input port for which this block enables the
interrupt.

If only one board of this type is physically present in
the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically
present in the target PC, enter the bus number and
the PCI slot number of the board associated with this
driver block. Use the format [BusNumber,
SlotNumber]. To determine the bus number and the
PCI slot number, type

getxpcpci

The input port for controlling this is a Boolean value. If the input port value is
true, the Enable Transmit Interrupt block enables the transmitter buffer
empty interrupt in the UART. After the interrupt service routine empties the
software FIFO, the interrupt is disabled.

2-57

2 Serial Communications Support

2-58

Filter Interrupt Reason. The Filter Interrupt Reason block filters the output of the
Read Int(errupt) Status block. If the condition that the interrupt query block
reads from the IIR register matches the one chosen here, the output is true.

This block is used exclusively inside the interrupt service subsystem for this
board.

Parameter Description

Port From the list, choose a port. This parameter specifies
the port from which this block gets control data.

Filter value From the list, choose Receive data, Transmitter
empty, or Modem status change. This parameter
specifies the interrupt reason that this filter block is
looking for.

Note that Modem status change currently has no
effect because the interrupt is never enabled.

Board Setup (Commtech) and Interrupt Check (Quatech). (Quatech and Commtech

only) The Board Setup and Interrupt Check block checks for instances where
the hardware IRQ differs from the software for which it is listening. This block
compares the software-selected interrupt against the value for which the board

xPC Target RS-232 and 422 /485 Drivers (Composite)

(PCI only) is configured. This check prevents IRQ mismatches. For the
Commtech Fastcom board, the corresponding block also sets up the board clock.

Parameter

Description

PCI Slot

Clock Bits
(Commtech)

IRQ Line Number

If only one board of this type is physically present in
the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically
present in the target PC, enter the bus number and
the PCI slot number of the board associated with this
driver block. Use the format [BusNumber,
SlotNumber]. To determine the bus number and the
PCI slot number, type

getxpcpci

Enter the number of clock bits to control a clock
generator common to both channels. This parameter
adjusts the master clock of both channels.

From the list, select an IRQ line number from 5 to
15, inclusive.

2-59

2 Serial Communications Support

xPC Target RS-232 Drivers (Conventional)

This section describes the components that make up the RS-232 conventional
drivers, and how you can create a model using these drivers. This section
includes the following topics:

¢ “Simulink Blocks for RS-232 I/O (Conventional)” on page 2-60 — Add setup,
send, send/receive, and receive blocks to your Simulink model.

¢ “MATLAB Message Structures for RS-232 I/O (Conventional)” on page 2-61
— Create message structures to sequence instructions to and from the
RS-232 device.

® “RS-232 Synchronous Mode (Conventional)” on page 2-62 — Add
synchronous driver blocks to have the device wait for a response before
continuing with other computations.

® “RS-232 Asynchronous Mode (Conventional)” on page 2-71 — Add
asynchronous driver blocks if the device does not have to wait for a response
before continuing with other computations.

e “RS-232 Simulink Block Reference (Conventional)” on page 2-83 —
Description of the RS-232 blocks for the conventional drivers.

e “RS-232 MATLAB Structure Reference (Conventional)” on page 2-88 —
Description of the RS-232 MATLAB structure for messages.

® “RS-232 Binary Mode (Conventional)” on page 2-93 — Add binary driver
blocks to transfer raw data.

Simulink Blocks for RS-232 1/0 (Conventional)

To support the use of RS-232, the xPC Target I/O library includes a set of
RS-232 driver blocks. These driver blocks can be added to your Simulink model
to provide inputs and outputs using one or more of the RS-232 ports.

® RS-232 Setup — One setup block is needed for each RS-232 port you use in
your model. The setup block does not have any inputs or outputs, but sends
the initialization and termination messages.

* RS-232 Send/Receive (Synchronous Mode) — Send/Receive blocks have
inputs and outputs from your Simulink model, and wait for responses to
messages sent and received.

® RS-232 Send (Asynchronous Mode) — Send blocks have inputs from your
Simulink model, and wait for responses to messages sent.

2-60

xPC Target RS-232 Drivers [Conventional)

® RS-232 Receive (Asynchronous Mode) — Receive blocks have output from
your Simulink model, and wait for responses to messages received.

MATLAB Message Structures for RS-232 1/0
(Conventional)

Communication is through a series of messages passed back and forth between
the target PC and the RS-232 device. To accomplish this, the messages sent to
the RS-232 device must be in a format that the device understands. Likewise,
the target PC must know how to interpret the data returned from the RS-232
device.

xPC Target uses MATLAB structures to create messages and map the input
and output ports on the RS-232 driver blocks to the data written and read from
the RS-232 devices. The RS-232 Setup block sends the messages in the
initialization structure after downloading the target application. The RS-232
Send/Receive, RS-232 Send, and RS-232 Receive blocks repeat the sending of
the messages in the send/receive, send, and receive structures during each
sample interval. When the target application stops running, the RS-232 Setup
block sends the messages in the termination structure.

Below is an example of the send and receive message structure for
asynchronous communication. In this example, an external RS-232 device
requires a string with two floating-point numbers. The numbers are entered
from the Simulink model to the first and second input ports of the RS-232 Send
driver block. The RS-232 device sends back two floating-point numbers that are
passed to the outputs of the RS-232 Receive driver block.

2-61

2 Serial Communications Support

2-62

R8232_S|end

[I
R8232_|Send(1) - R823|2_Send(n)

.SendData - 'start, $f, %f,stop:\;’
JdnputPorts - [1, 21
.Timeout- 0.01

R8232_R|eceive

I I
RS232_Feceive(1) o R823|2_Receive(n)

.RecData- ‘start, %f,%f,stop:\;’
.OutputPorts - [1, 2]

Timeout-0.01

.Eom-1

For more information on this example, see “Creating RS-232 Message
Structures (Asynchronous)” on page 2-79.

RS-232 Synchronous Mode (Conventional)

Use synchronous mode when you need to receive a response before continuing
with other computations. In synchronous mode, data is sent to an external
device and the driver block waits for a response. In other words, the I/O driver
blocks or stops execution of the target application until an answer is received
from the external device or it reaches a time-out. This section includes the
following topics:

® “Notes for RS-232 Synchronous Mode” on page 2-63 — Overview of RS-232
communication with xPC Target blocks.

® “Adding RS-232 Driver Blocks (Synchronous)” on page 2-63 — Add the setup,
send, and receive blocks you need to your Simulink model for RS-232
communication.

xPC Target RS-232 Drivers [Conventional)

® “Creating RS-232 Message Structures (Synchronous)” on page 2-68 —
Create the initialize, send/receive, and termination message structures you
need in the MATLAB workspace.

Notes for RS-232 Synchronous Mode

For the example in this section, assume an external device (RS-232 device)
includes a D/A conversion module with four independent channels and an
output voltage range of -10 to 10 volts. Also assume that the external device
outputs a new voltage if it receives a serial string with a value to identify the
D/A channel and the voltage value.

Use a Constant block as an input to the Send/Receive block to select the D/A
channel, and a Signal Generator block as a source for voltage values. Also, set
up the message structures to receive a confirmation message from the external
module after the target PC sends a message string to the device.

In synchronous mode, the data is sent to the external device and the block
waits until a response (for example, data) is received from the device before the
execution of the block is considered to be complete. In other words, the I/0
driver blocks until an answer is received from the external device or it reaches
a time-out.

When it is necessary to receive a response before continuing with other
computations, synchronous mode is used, which implies that the Send &
Receive block is placed in your model. This block includes both input and
output lines.

Adding RS-232 Driver Blocks (Synchronous)

You add RS-232 driver blocks to your Simulink model when you want to use
the serial ports on the target PC for I/O.

After you create a Simulink model, you can add xPC Target driver blocks and
define the initialization, send/receive, and termination message structures:

1 In the MATLAB command window, type
xpclib

The xPC Target driver block library opens.

2-63

2 Serial Communications Support

2 Double-click the RS-232 group block.

A window with blocks for RS-232 drivers opens.

Note This library contains two main sections, Composite drivers and
Conventional drivers. Refer to the Conventional drivers section, where there
are two setup blocks. The second block is included for compatibility with xPC
Target Version 1.0.

] Library: xpclib/R5232 _ ol x|

File Edit WYiew Formatb Help

Composite drivers

o
ASCI ASCI RE232
>{1 Encode E'F +:' Decode ! }> +:' State %E
ASCIl Encode ASCIl Decode RS5232 State

Quatech Mainboard Diamond Commiech
F FFO o FIFO
Read wirite
FIFD macd FIFO write
Fro ! g FAFO T
Read HORS 5 Read BINARY;
FIFQ ASCI mad FIF bin read

Conventional drivers [Dbzalete]

RE232
Mainboard
Setup
Sy nchmnous‘\s nchonous Binary
RE232 ¥ ¥ v
Mode Mode
RE232
Mainboard 1.0 compatible
Setup
Setup

Alternatively, you can access the xPC Target block library from the Simulink
Library Browser. In the Simulink window, and from the View menu, click
Show Library Browser. In the left pane, double-click xPC Target, and then
click RS-232.

3 From the Conventional drivers area, drag and drop an RS-232 Setup block
to your Simulink model.

2-64

xPC Target RS-232 Drivers [Conventional)

4 In the Library window, double-click the RS-232 Synchronous mode group
block. The library window with blocks for RS-232 synchronous
communication opens.

Note This library contains two Setup and Receive blocks. The second block is
included for compatibility with xPC Target Version 1.0.

ZILibrary: #pcliby 10l =l

File Edit Wiew Format Help

RS-232
fzinboad
Send/Receaie

RE232

W1.0 compatible

RSE2E
fvlzinbozmd
Send/Recs e

Send & Receine

5 Drag and drop an RS-232 Send/Receive block to your Simulink model.

6 Add a Signal Generator and a Constant block.

Your model should look similar to the figure shown below. Note that inputs
on the RS-232 Send/Receive block are not defined or visible. The inputs are
defined in a MATLAB message structure, and visible only after you load that
structure into the MATLAB workspace and update your Simulink model.

2-65

2 Serial Communications Support

2-66

E!rsZSZsync

File Edit Wiew Simulakion Format Tools Help

=10l]

RS-232
fzinboad
Setup

RE2321

1

Sonstant

oooo
i)

Signal
Genembor

R5-232
flzin bozd
Send/Receive

REEa2

7 Double-click the RS-232 Setup block. Enter values to configure the COM1
port on the target PC.

For example, if the target PC is connected to COM]1, and serial
communication is set to 5760 baud, 8 data bits, and 1 stop bit, your Block
Parameter dialog box should look similar to the figure shown below.

Note If you are not using an initialization or termination structure, in the
Initialization Struct and Termination Struct boxes, enter the empty matrix

[l

xPC Target RS-232 Drivers [Conventional)

—ra232zetup [mask] [link]

RS-232
tainboard
Setup

—Parameters

Part =

Baud rate; I 57600

Mumber of data bits: I a

Mumber of ztop bits: I 1

Parity: I Mare

Lol Lef Lo L] Lo

Pratocol: I Mone
Send buffer size:

J1024

Receive butfer size:

[1024

Initialization command structure:
fi

Termination command structure:

i

ok LCancel | Help | Apply |

For more information on entering the block parameters, see “RS-232 Setup
Block” on page 2-84. For the procedure to create the initialization and
termination structures, see “RS-232 MATLAB Structure Reference
(Conventional)” on page 2-88.

8 Click OK. The Block Parameters dialog box closes.

9 Double-click the RS-232 Send/Receive block. The Block Parameters dialog
box opens.

10 From the Port list, select either COM1 or COM2. For this example, select COM1.
In the Message struct name box, enter the name for the MATLAB structure
this block uses to send messages to the COM1 port. The name of the message

2-67

2 Serial Communications Support

structure is not the name of the M-file, but the name of the structure created
with the M-file.

In the Sample Time box, enter the sample time or a multiple of the sample
time you entered in the Receive block.

Your Block Parameter dialog box should look similar to the figure shown
below.

2 d2zendrec [mask] (link)

R5-232
M ainboard
Send/Receive

—Parameters

Fart: I COM1 LI

Meszage stiuct name:
|R5232_%knd_Receive

Sample time;
Jo1

OF. I LCancel | Help | Apply |

For information on entering the block parameters, see “RS-232 Send/Receive
Block (Synchronous)” on page 2-86. For the procedure to create the
send/receive structure, see “RS-232 MATLAB Structure Reference
(Conventional)” on page 2-88.

11 Click OK. The Block Parameters dialog box closes.

Your next task is to create the MATLAB message structures that the RS-232
driver blocks use to sequence commands to the RS-232 device. See “Creating
RS-232 Message Structures (Synchronous)” on page 2-68.

Creating RS-232 Message Structures (Synchronous)

RS-232 drivers use MATLAB structures to send and receive messages and map
the input and output ports on the RS-232 driver blocks to the data written and
read from the RS-232 devices.

2-68

xPC Target RS-232 Drivers [Conventional)

After you add an RS-232 Setup and RS-232 Send/Receive block to your
Simulink model, you can create the message structures to communicate with
the RS-232 devices. You need to create and load these structures into the
MATLAB workspace before you build your target application. The easiest way
to create these structures is using an M-file and loading that M-file into the

MATLAB workspace.

1 In the MATLAB Command Window, and from the File menu, point to New,

and then click M-file.
A MATLAB text editor window opens.

Enter the initialization, send/receive, and termination messages. Each
message is an element in a MATLAB structure array. For information and
examples of this structure, see “RS-232 MATLAB Structure Reference
(Conventional)” on page 2-88.

For example, assume that you have an external RS-232 device with a D/A
module that requires a string in the format 'identifier, channel,
value;\n'. identifier is any string. channel is an integer value between 1
and 2, defining which D/A channel to update. value is a floating-point value
indicating the new voltage for the D/A output.

Additionally, when the external device receives a legal string, it accepts the
string as an input message and returns the message 'noerror;\n'. This
message is provided as a confirmation. As an example, you can type the
following.

Note Field names in the structures are case sensitive.

RS232_Send_Receive(1).SendData = 'da_1234,%d,%f,;\n';
RS232_Send_Receive(1).InputPorts = [1 2];
RS232_Send_Receive(1).Recbata = 'noerror\n';
RS232_Send_Receive(1).Timeout = 0.01;
RS232_Send_Receive(1).EOM = 1;

2 Serial Communications Support

From the File menu, click Save As. In the Save as file dialog box, enter the
name of the M-file script. For example, enter

RS232Sync_Messages.m
Close the text editing window.

In the MATLAB Command Window, type the name of the M-file you created
with the RS-232 structures. For example, type

RS232Sync_Messages

MATLAB loads and runs the M-file to create the message structures in the
MATLAB workspace needed by the RS-232 driver blocks.

Open your Simulink model, or press Ctrl+D.

Simulink updates the RS-232 driver blocks with the information from the
structures. For example, Simulink adds inputs and outputs defined in the
structures to the blocks.

Connect the input and output ports on the RS-232 driver blocks to other
blocks in your Simulink model.

You model should look similar to the figure shown below.

Zlrs232sync 10l =l

File Edit Wiew Simulakion Format Tools Help

1
Constant
RS232 1 R5232

hilzin board flzin bozd
Setup 2 Send/Receive
R5232 1 RS232
oooo
Lela]

Signal
Genembor

xPC Target RS-232 Drivers [Conventional)

8 Set the PreLoadFcn for your Simulink model to load the message structures
when you open your model. For example, if you saved the message
structures in the M-file RS232Sync_messages, type

set_param(gcs, 'PreLoadFcn', 'RS232Sync_messages.m')

Note If you do not manually load the message structures before opening your
Simulink model, or have the message structures automatically loaded with
the model, the port connections to the RS-232 driver break.

Your next task is to build and run the target application. However, the example
above only illustrates how to set up the dialog entries when using the Send &
Receive block. Without an external RS-232 device to receive the messages and
return areply 'no error\n', this model cannot run successfully on your target

PC. It will block and wait for a reply each time the application sends a message.

RS-232 Asynchronous Mode (Conventional)

Use asynchronous mode when you do not need a response before continuing
with other computations. You can achieve faster sample rates with
asynchronous mode because neither the Send nor Receive block waits for a
reply. As a result, the asynchronous mode blocks do not block as do the
synchronous mode blocks. The application updates the received outputs only
when the entire package of data is received from the external device. This
section includes the following topics:

® “Notes for RS-232 Asynchronous Mode” on page 2-72 — Overview of RS-232
communications with xPC Target blocks.

® “Adding RS-232 Driver Blocks (Asynchronous)” in Chapter 2 — Add the
setup, send, and receive blocks you need to your Simulink model for RS-232
communication.

® “Creating RS-232 Message Structures (Asynchronous)” on page 2-79 —
Create the initialize, send/receive, and termination message structures you
need in the MATLAB workspace.

¢ “Building and Running the Target Application (Asynchronous)” on page 2-81
— Run a real-time application with RS-232 communication.

2-71

2 Serial Communications Support

2-72

Notes for RS-232 Asynchronous Mode

For the example in this section, two asynchronous mode blocks illustrate how
you can test RS-232 I/O on the target PC in a simple loop-back test. This simple
but effective test lets you check that the RS-232 Send and RS-232 Receive
blocks work correctly with your system using minimal hardware.

In this loop-back test, you use the COM1 port for sending signals and the
COM2 port for receiving signals. A NULL modem serial cable connects COM1
to COM2 so that any messages sent from the target PC through COM1 are
received by COM2 on the same target PC.

Use a Sine Wave block as an input to an RS-232 Send block that you connect
to the COM1 port. Connect the COM2 port to an RS-232 Receive block. The
signal received from this block is then passed through a Gain block of -1.

In the asynchronous mode, data is sent without waiting for response data to be
received. The Send block completes execution immediately upon completing
the Send transfer. The Receive block completes execution upon completing the
Receive transfer or when no more data is ready to be retrieved.

For sending data in asynchronous mode, use the RS-232 Send block. This block
only has input lines for the data to be sent. For receiving data, you must use
the Receive block. This block only has output lines for the data to be received.
Outputs are updated only when the entire package of data is received from the
external device.

Adding RS-232 Driver Blocks (Asynchronous)

You add RS-232 driver blocks to your Simulink model when you want to use
the serial ports on the target PC for I/O.

After you create a Simulink model, you can add xPC Target driver blocks and
define the initialization, send, receive, and termination message structures:

1 In the MATLAB Command Window, type
xpclib

The xPC Target driver block library opens.
2 Double-click the RS-232 group block.

A window with blocks for RS-232 drivers opens.

xPC Target RS-232 Drivers [Conventional)

E! Library: »pclib/RS5232

File Edit WYiew Formatb Help

=lofx|

Composite drivers

| Ascll o AsCl o Rs2s2 [
Encode Decode State g
ASCIl Encode ASCIl Decode RS5232 State
Quatech Mainboard Diamond Commiech
FIFC FIFC
>{F Read E}> +: wirite F}>
FIFD macd FIFO write
Fro ! g FAFO T
Read HORS 5 Read BINARY;

FIFD ASCIH mad

RE232
Mainboard
Setup

Rs232

RE232
Mainboard
Setup

Setup

FIFD bin mad

Conventional drivers [Dbzalete]

o

Synchmnous Asynch
Mode

1.0 compatible

Mode

o

Binary
Mode

mnous

Alternatively, you can access the xPC Target block library from the Simulink
Library Browser. In the Simulink window, and from the View menu, click
Show Library Browser. In the left pane, double-click xPC Target, and then

click RS-232.

3 Drag and drop two RS-232 Setup blocks to your Simulink model.

4 In the Library window, double-click the RS-232 Asynchronous mode group
block. The library window containing blocks for RS-232 Synchronous
communication opens.

Note This library contains two send and two receive blocks. The second block
is included for compatibility with xPC Target Version 1.0.

2-73

2 Serial Communications Support

2-74

E!Lihrary: upclib/RS232/Async 101 =l
File Edit View Formab Help

R5E32 R5E32

flzin bozmd flzin bozmd
Send Receie
RSE32 RS2321

W1.0 compatible

RSE32 RSE32

fizinbozmd fizinbozmd
Send Riece e
Send Receine

Alternatively, you can access the xPC Target block library from the
Simulink Library Browser. In the Simulink window, and from the View
menu, click Show Library Browser. In the left pane, double-click xPC
Target, and then click RS-232.

Drag and drop the RS-232 Send and RS-232 Receive blocks into your
Simulink model.

Add a Signal Generator, Gain, and xPC Target Scope block.

Your model should look similar to the figure below. Note that you cannot
connect to the inputs on the RS-232 Send block and the outputs on the
RS-232 Receive block, because they are not defined or visible. The inputs
and outputs are defined in a MATLAB message structure, and visible only
after you load that structure into the MATLAB workspace and update your
Simulink model.

xPC Target RS-232 Drivers [Conventional)

E!r523zasync

File Edit Wiew Simulakion Format Tools Help

RE232 RE232
oooo
e h.l‘l:fﬂfoaaerd n.l'largin bz n.l'largin bz
- Sand =tup =tup
Signal
GEnemior Feoa R5232 2 RSEZ3E 3
| .
Ll
Tamet Scope
RS232 Wd: 1
fzinboad
Receive
Fain Scope (PGS
RS232 1

7 Double-click the first RS-232 Setup block. Enter values to configure the
COM1 port on the target PC.

For example, if the COM1 and COM2 ports of the target are connected with
a RS-232 NULL modem cable, and you set serial communication to 57600
baud, 8 data bits, and 1 stop bit. Your Block Parameters dialog box should
look similar to the figure shown below.

Note Ifyou are not using an initialization or termination structure, in the
Initialization Struct and Termination Struct boxes, enter the empty matrix

[l

2-75

2 Serial Communications Support

2 d2zetup [mask] (link]

R5-232
M ainboard
Setup

—Parameters

Port h

Baud rate: I RTEOD

Murmnber of data bits: I g

Murmber of ztop bits: I 1

Parity: I Mone

Lol Lef Le] Lo Lo

Frataczal: I MHare

Send buffer size:

{1024

Receive buffer size:

1024

Initialization command structure:
fi

Termination cormmand structune:

i

0K I LCancel | Help | Apply |

For more information on entering the block parameters, see “RS-232 Setup
Block” on page 2-84. For the procedure to create the initialization and
termination structures, see “RS-232 MATLAB Structure Reference
(Conventional)” on page 2-88.

8 Click OK. The Block Parameters dialog box closes.

9 Repeat the previous setup for the second RS-232 Setup block and the COM2
port. Use the same Baudrate, Databits, Stopbits, Parity, and Protocol
that you entered in the first RS-232 Setup block.

10 Double-click the Send block. The Block Parameters dialog box opens.

2-76

xPC Target RS-232 Drivers [Conventional)

11 From the Port list, select either COM1 or COM2. For this example, select COM1.
In the Message struct name box, enter the name for the MATLAB structure
this block uses to send messages to the COM1 port. In the Sample Time box,
enter the sample time or a multiple of the sample time you entered in the

RS-232 Receive block.

Your Block Parameters dialog box should look similar to the figure shown

below.

E Block Parameters: R5232

—rz232zend [mazk] [ink)

2%

RS5-232
b ainbioard
Send

—Parameters

Part: | COM1

Meszage stuct name:

|R5232_Send

Sample tirme:

[

LCancel | Help

| Apply |

For information on entering the block parameters, see “RS-232 Send Block
(Asynchronous)” on page 2-87. For the procedure to create the send

structure, see “RS-232 MATLAB Structure
page 2-88.

Reference (Conventional)” on

12 Click OK. The Block Parameters dialog box closes.

13 Double-click the RS-232 Receive block.

14 The Block Parameters dialog box opens.

15 From the Port list, select either COM1 or COM2. For this example, select COM2.
In the Message Struct Name box, enter the name for the MATLAB
structure this block uses to receive messages from the COM2 port. In the

2-77

2 Serial Communications Support

Sample Time box, enter the sample time or a multiple of the sample time
you entered in the RS-232 Send block.

Your Block Parameters dialog box should look similar to the figure shown
below.

—re2d2rec [mazk] [link)

R5-232
M ainboard
Receive

—Parameters

Fart: I COM2 LI

Meszage struct name:
|R5232_Receivel

Sample time:
jo1

0K I LCancel | Help | Apply |

For information on entering the block parameters, see “RS-232 Receive
Block (Asynchronous)” on page 2-87. For the procedure to create the send
structure, see “RS-232 MATLAB Structure Reference (Conventional)” on
page 2-88.

16 Click OK. The Block Parameters dialog box closes.

17 Double-click the Signal Generator block and enter parameters. For example,
from the Wave Form list, select sine. In the Amplitude and Frequency
boxes, enter 1. From the Units list, select Hertz. Click OK.

18 Double-click the Gain block and enter parameters. For example, in the Gain
box, enter -1. Click OK.

Your next task is to create the MATLAB message structures that the RS-232
driver blocks use to sequence commands to the RS-232 device. See “Creating
RS-232 Message Structures (Synchronous)” on page 2-68.

2-78

xPC Target RS-232 Drivers [Conventional)

Creating RS-232 Message Structures (Asynchronous)

RS-232 drivers use MATLAB structures to send and receive messages and map
the input and output ports on the RS-232 driver blocks to the data written and
read from the RS-232 devices in synchronous mode.

After you add the RS-232 Setup, Asynchronous Send, and Asynchronous
Receive blocks to your Simulink model, you can create the message structures
to communicate with the RS-232 devices. You need to create and load these
structures into the MATLAB workspace before you build your target
application. The easiest way to create these structures is to use an M-file and
load that M-file into the MATLAB workspace. See xpcrs232V2.mdl in the
xpcdemos directory for an example model. That example sends and receives two
floating-point numbers. In that example, both floating-point number fields for
SendData are filled from InputPorts 1 because only one input port is specified.
In the case of RecData, the first floating-point number field is sent to
OutputPorts 1, but the second floating-point number field is ignored because
only one output port is specified.

The following procedure describes how to create an RS-232 message structure
to send and receive one floating-point number:

1 In the MATLAB Command Window, and from the File menu, point to New,
and then click M-file.

A MATLAB text editor window opens.

2 Enter the initialization, send, receive, and termination messages. Each
message is an element in a MATLAB structure array with a series of fields
For information and examples of these fields, see “RS-232 MATLAB
Structure Reference (Conventional)” on page 2-88.

For example, if you want to send and receive one floating-point number, type
the following. In this example, the floating-point number field for SendData
is filled from InputPorts 1. In the case of RecData, the floating-point
number field is sent to OutputPorts 1.

Note Field names in the structures are case sensitive.

2-79

2 Serial Communications Support

2-80

RS232_Send(1).SendData = 'start,%f,%f,stop;\r';
RS232_Send(1).InputPorts = [1];
RS232_Send(1).Timeout = 0.01;

RS232_Send(1).EOM = 1;

RS232_Receive .RecData = 'start,%f,%f,stop;\r';

RS232_Receive
RS232_Receive
RS232_Receive

.OutputPorts = [1];
.Timeout = 0.01;
.EOM = 1;

—_~ e~~~
—_
~— — — ~—

Note Ifyou do not manually load the message structures before opening your
Simulink model, or have the message structures automatically loaded with
the model, the port connections to the RS-232 blocks break.

3 From the File menu, click Save As. In the Save As File dialog box, enter the
name of the M-file. For example, enter

RS232Async_Messages.m
4 Close the text editing window.

5 Inthe MATLAB Command Window, type the name of the M-file you created
with the RS-232 structures. For example, type

RS232Async_Messages

MATLAB loads and runs the M-file to create the message structures in the
MATLAB workspace needed by the RS-232 driver blocks.

6 Open your Simulink model, or press Ctrl+D.

Simulink updates the RS-232 driver blocks with the information from the
structures. For example, Simulink adds the inputs and outputs defined in
the structures to the blocks.

7 Connect the input and output ports on the RS-232 driver blocks to other
blocks in your Simulink model.

Your model should look similar to the figure shown below.

xPC Target RS-232 Drivers [Conventional)

Zlrs232async 10l =l
File Edit Wiew Simulakion Format Tools Help
oooo RS232 RS-Z32 RS-Z32
ol =1 hizinboamd hilainboad hilainboad
Send Setup Setup
Signal
GiEnemior RSZ32 R5232 2 RSEZ3E 3
| .
Ll
Tamet Scope
RS-232 Id: 1
ainboad 1
Receive
Fain Scope (PGS
RSE32 1

8 Set the preload function for your Simulink model to load the message
structures when you open the model. For example, if you saved the message
structures in the M-file RS232async_messages, type

set_param(gcs, 'PreLoadFcn', 'RS232async_messages')

Note Ifyou do not manually load the message structures before opening your
Simulink model, or have the message structures automatically loaded with
the model, the port connections to the RS-232 blocks break.

Your next task is to build and run the target application.

Building and Running the Target Application (Asynchronous)

xPC Target and Real-Time Workshop create C code from your Simulink model.
You can then use a C compiler to create executable code that runs on the target
PC.

After you have added the RS-232 blocks for asynchronous mode to your
Simulink model, and created and loaded the RS-232 structures into the
MATLAB workspace, you can build your target application.

2-81

2 Serial Communications Support

2-82

Note You cannot use a serial port to communicate between the host PC and
target PC with this example. You can only use COM1 if it is not already in use
for host-target communications.

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Build Model.

2 In the MATLAB Command Window, type
+tg or tg.start or start(tg)

The target application begins running in real time.

For each sample period, the RS-232 messages you entered in the RS-232
send and receive message structures are executed.

In this example, the target PC displays the inverted waveform. The RS-232
Send and RS-232 Receive blocks require a minimum delay or one sample to
send the data and also receive it. When running at faster sample rates,
several sample intervals might elapse while one set of data is transmitted,
because RS-232 communication is not particularly fast. The sample delay
just described is not visible in this example.

xPC Target RS-232 Drivers [Conventional)

- ——
¢ Real-Time xPC Target Spy I =] B3

xpocrs232 Scope! 1., signal B added

Z9ME Scope! 1, signal 2 added

i Scope: 1, trigger signal set to 2

RT, 1 .

t 3 :u':gte Scope: 1, trigger level set to B.000000

380 4 Scope: 1, TriggerScope set to 1

Scope: 1, lower y-axis limit set to O.000000

@.e1 Scope: 1, upper y-axis limit set to O.000000

@.0001527 System! initializing application finished

31.58 s System! execution started (sample time:!: @.0100800)

a2
y / \\ // \\ /

You can extend this example for multiple D/A channels by simply adding more
input signals and modifying the format string to have additional '%f"' format

specifiers.

Note This example requires that you not use host PC to target PC

communication using a serial port because that would block that COM port

and the example would not operate.

RS-232 Simulink Block Reference (Conventional)

xPC Target supports RS-232 communication with driver blocks in your

Simulink model and message structures in the MATLAB workspace.

This section includes the following topics:

2-83

2 Serial Communications Support

® “RS-232 Setup Block” on page 2-84 — Sends the initialize and termination
messages. You need one Setup block for each RS-232 port you use in your
model.

® “RS-232 Send/Receive Block (Synchronous)” on page 2-86 — Sequences the
send and receive messages for synchronous serial communication.

® “RS-232 Send Block (Asynchronous)” on page 2-87 — Sequences the send
messages.

® “RS-232 Receive Block (Asynchronous)” on page 2-87 — Sequences the
receive messages.

RS-232 Setup Block
The Block Parameters dialog box for the RS-232 Setup block contains the

following fields:

Parameter Description

Port From the list, select COM1, COM2, COM3, or COM4. This is
the serial connection the target PC uses to
communicate with the RS-232 device.

Baud rate From the list, select 115200, 57600, 38400, 19200,
9600, 4800, 2400, 1200, 300, or 110.

Number of data From the list, select either 7 or 8.

bits

Number of stop From the list, select 1 or 2.

bits

Parity From the list, select None, 0dd, or Even.

Protocol From the list, select None or XOnX0ff. If your serial

device does not support hardware handshaking, or
your application software requires XOn/X0ff
handshaking, you might need to select XOn/X0Off.

Send buffer size Enter the size, in bytes, of the send buffer.

2-84

xPC Target RS-232 Drivers [Conventional)

Parameter Description
Receive buffer Enter the size, in bytes, of the receive buffer.
size

The Send Buffer Size and Receive Buffer Size must
be large enough to hold the data to be sent or received
during each model step. It is important to be aware
that the buffers must also be large enough to store old
data from a prior model step in the event that the
entire data transmission was not completed during

the prior step.
Initialization Enter the name of the structure containing the
command initialization messages and the expected
structure acknowledgments when the model is initialized. If

you are not using initialization messages, enter an
empty matrix in this box.

For information on creating this structure, see
“Creating RS-232 Message Structures
(Synchronous)” on page 2-68 and “Creating RS-232
Message Structures (Asynchronous)” on page 2-79.

Termination Enter the name of the structure containing the
command termination messages and expected
structure acknowledgments when the model is terminated. If

you are not using termination messages, enter an
empty matrix in this box.

The RS232 Setup block defines the number of databits, baudrate, protocol,
and so on for each COM port used in your Simulink model. Each model that
uses RS232 I/O must have one RS232 Setup block for each COM port in the
model. The RS232 Setup block does not have any inputs or outputs.

If your host PC and target PC are connected using serial communication, one
COM port on your target PC is dedicated for communication with your host PC.
You cannot use this COM port in your block diagram as an I/O device. For
example, if the target PC uses COM1 for communication with the host PC,
COM1 cannot be used by your block diagram. An error message is displayed if
you use COM1 as an I/O device in your block diagram. The error message
appears when you attempt to build and download the target application. In this

2-85

2 Serial Communications Support

2-86

example, you must use COM2 as an I/O device in your block diagram. If you are
using TCP/IP as your host PC to target PC communications protocol, then you
can use any COM ports with RS-232 I/O drivers in your block diagram.

RS-232 Send/Receive Block (Synchronous)

The Block Parameters dialog box for the Synchronous Send & Receive block
contains the following fields:

Parameter

Description

Port

Message
struct
name

Sample
time

From the list, select COM1, COM2, COM3, or COM4. This list
allows you to define which COM port is used to send and
receive the data. The model must contain one Setup block
for each COM port you use to send and receive data.
Otherwise, an error message is displayed. Note that data is
sent and received on the same COM port.

Enter the name of the MATLAB structure this block uses to
send and receive messages and data to an RS-232 device.
For information to create this structure, see “Creating
RS-232 Message Structures (Synchronous)” on page 2-68.

This entry allows you to define the sample time of the block.
Because this block waits for data to be received from the
RS-232 external device before the block finishes executing,
small sample times are not suitable with synchronous mode.
You must allow sufficient time for both the RS232 send and
the RS232 receive operations to be completed. The smallest
sample time depends on the following:

* Amount of data being sent
* Amount of data being received
® Selected baud rate

® Response time of the external device

xPC Target RS-232 Drivers [Conventional)

RS-232 Send Block (Asynchronous)
The Block Parameters dialog box for the Asynchronous Send block contains the

following fields:

Parameter Description

Port This list allows you to define which COM port is used for
sending data. The model must contain one RS232 Setup
block to configure its COM port. Otherwise, an error
message is displayed.

Message Enter the name of the MATLAB structure this block uses to

struct send messages and data to an RS-232 device. For

name information on creating this structure, see “Creating
RS-232 Message Structures (Asynchronous)” on page 2-79.

Sample This entry allows you to define the sample time of the block.

time Because the block does not wait until data is received from

the external RS-232 device, you can set sample times to
small values.

RS-232 Receive Block (Asynchronous)

The Block Parameters dialog box for the Asynchronous Receive block contains
the following fields:

Parameter

Description

Port

This list allows you to define which COM port is used to send
and receive data. The model must contain one RS232 Setup
block for the same COM port. Otherwise, an error message
is displayed.

2-87

2 Serial Communications Support

2-88

Parameter Description

Message Enter the name of the MATLAB structure this block uses to
struct receive messages and data from an RS-232 device. For
name information on creating this structure, see “Creating

RS-232 Message Structures (Asynchronous)” on page 2-79.

Sample This entry allows you to define the sample time of the block.

time Because the block does not wait until data is received from
the external RS-232 device, you can set sample times to
small values.

RS-232 MATLAB Structure Reference (Conventional)

You do not use all message fields in all messages. For example, a message to
send data would not use the message field.RecData, but would use the field
.SendData. However, knowing the possible message fields is helpful when you
are creating any of the message structures. This section contains the following
topics:

® “RS-232 Send/Receive Message Structure (Synchronous)” on page 2-89 —
Description of the message fields for the send/receive structure associated
with RS-232 asynchronous mode and the RS-232 Send/Receive block

® “RS-232 Send Message Structure (Asynchronous)” on page 2-91 —
Description of the message fields for the send structure associated with
RS-232 synchronous mode and the RS-232 Send block

® “RS-232 Receive Message Structure (Asynchronous)” on page 2-92 —
Description of the message fields for the receive structure associated with
RS-232 synchronous mode and the RS-232 Receive block

® “Supported Data Types for Message Fields” on page 2-93 — List of supported
data types and the format you use to indicate those types in message fields

xPC Target RS-232 Drivers [Conventional)

RS-232 Send/Receive Message Structure (Synchronous)

Below are descriptions of the possible message fields for the send /receive
structures with asynchronous mode. The order of the fields does not matter.
However, the field names are case sensitive.

Message
Field

Description

SendData

InputPorts

RecData

Data and format sent to the RS-232 device. Default
value = '

Note that the SendData syntax format is the same as the
C printf () library function. It is also very similar to the
MATLAB fscanf method, with the exception that
SendData is not vectorized.

Number of input ports for the driver block. Data from the
input ports is sent to the RS-232 device with the message
field.SendData. Default value = []. The highest number
you enter determines the number of input ports on the
driver block

For example, the following message creates two input
ports on the driver block,

RS232_Send_Receive(1).InputPorts= [1 2];

Data and format received from the RS-232 device. Default
value = ' '. The format of this statement is very similar to
a scanf statement. The read data is mapped to the output
ports defined in the message field .OutputPorts. Ifa
negative output port is given, the data is read in, but not
sent to any output port.

2-89

2 Serial Communications Support

2-90

Message
Field

Description

OutputPorts

Timeout

EOM

Number of output ports from the driver block. Data
received from an RS-232 device is sent to the output ports
with the message field .ReceiveData. Default value=1].
The highest number you enter determines the number of
output ports on the driver block.

For example, to use output ports 1 and 2 on the driver
block, type

RS232_Send_Receive.OutputPorts = [1 2];

Time, in seconds, the driver block waits for data to be
returned. Default value = 0.049.

Number of characters you use to indicate the end of a
message.

xPC Target RS-232 Drivers [Conventional)

RS-232 Send Message Structure (Asynchronous)

Below is a description of the possible message fields for the send structure with
synchronous mode. The order of the message fields does not matter. However,
the field names are case sensitive.

Message
Field

Description

SendData

InputPorts

Timeout

EOM

Data and format sent to the RS-232 device. Default
value="'".

Note that the SendData syntax format is the same as the C
printf () library function. It is also very similar to the
MATLAB fscanf method, with the exception that SendData
is not vectorized.

Number of input ports for the driver block. Data from the
input ports is sent to the RS-232 device with the message
field .SendData. Default value = []. The highest number
you enter determines the number of input ports on the
driver block.

For example, the following message creates two input ports
on the driver block.

RS232_Send_Receive(1).InputPorts= [1 2];

Time, in seconds, the driver block waits for data to be
returned. Default value = 0.049.

Number of characters you use to indicate the end of a
message.

2-91

2 Serial Communications Support

RS-232 Receive Message Structure (Asynchronous)

Below are descriptions of the possible message fields for the receive message
structure with synchronous mode.

Message
Fields

Description

RecData

OutputPorts

Timeout

EOM

Data and format received from the RS-232 device. Default
value = ' '. The format of this statement is very similar to
a scanf statement. The read data is mapped to the output
ports defined in the message field .OutputPorts. Ifa
negative output port is given, the data is read in but not
sent to any output port.

Number of output ports from the driver block. Data
received from an RS-232 device is sent to the output ports
with the message field .ReceiveData. Default value=11].
The highest number you enter determines the number of
output ports on the driver block.

For example, to use output ports 1 and 2 on the driver
block,

RS232_Send_Receive.OutputPorts = [1 2];

Time, in seconds, the driver block waits for data to be
returned. Default value = 0.049.

Number of characters you use to indicate the end of a
message.

2-92

xPC Target RS-232 Drivers [Conventional)

Supported Data Types for Message Fields

The following table lists the supported data types for the RS-232 message
fields.

Format Description

%c and %C Single character

%d or %i Signed decimal integer

%u Unsigned decimal integer

%0 Unsigned octal integer

%X Or %X Unsigned hexadecimal integer using 'abcdef' or

'ABCDEF' for the hexadecimal digits

%e or %E Exponential format using e or E
%t Floating point
%g Signed value printed in f or e format depending on

which is smaller

%G Signed value printed in f or E format depending on
which is smaller

RS-232 Binary Mode (Conventional)

Use RS232 Binary Mode when you want to transfer raw data. The format of

this data is either a custom format or is an image of the bytes as they are stored

in memory. This section includes the following topics:

e “RS-232 Binary Mode I/O” on page 2-94 — When to use RS232 binary mode

® “RS-232 Binary Mode I/O” on page 2-94 — How to select drivers from the
xPC Target block library

® “RS232 Binary Receive Block” on page 2-96 — Explanation of block
parameters, inputs, and outputs

¢ “RS232 Binary Send Block” on page 2-97 — Explanation of Block
Parameters and input

2-93

2 Serial Communications Support

2-94

¢ “Example Using RS232 Binary Mode I/O” on page 2-99 — Simulink model
using xPC Target driver blocks

RS-232 Binary Mode 1/0O

The binary mode drivers operate in asynchronous mode. In other words, they
do not wait until an entire packet of data is received, but receive as many bytes
as available and then go on to the next data block. When an entire packet has
been received, the block outputs the new data. Sent data is also handled
similarly. The Send block instructs the RS-232 hardware to send a certain
number of bytes, but does not wait for these bytes to actually be sent.

The RS-232 binary mode infrastructure also includes blocks to pack and
unpack any data received. This translates the raw bytes into signals that
Simulink can understand.

The functioning of these blocks is identical to the corresponding blocks in the
UDP section of the xPC Target block library. The RS232 Binary Pack and
Unpack blocks are actually references to these blocks. For information about
UDP and the functionality of these blocks, see Chapter 6, “UDP I/O Support.”

Using RS-232 Binary Mode

To use the RS-232 binary mode blocks, you must first insert exactly one RS232
Setup block for each COM port into your model. The setup for this block is
exactly the same as it is for text-based I/O, except that initialization or
termination structures are ignored. In the dialog box, set both these fields to
the empty matrix ([]).

The RS-232 binary mode blocks can be found in the RS-232 section of the xPC
Target Block Library. Use the following procedure to access these blocks:

1 In the MATLAB Command Window, type
xpclib

The xPC Target Block Library open.
2 Double-click the group block RS232.

The Library: xpclib/RS232 library opens.

xPC Target RS-232 Drivers [Conventional)

E! Library: »pclib/RS5232

File Edit WYiew Formatb Help

=lofx|

Composite drivers

FIFO FIFO
>{ F Read L }> >{ L write F
FIFQ read FIFC weriter
Fro ! g FAFO T
Read HDRS 5 Read BINARY,

FIFD ASCIH mad

RE232
Mainboard
Setup

Rs232

Rs232

Setup

Setup

FIFD bin mad

[n}
ASCI ASCI RE232
>{1 Encode D}> >{D Decode ! L State %E
ASCI Encode ASCI Decode RS232 State

Conventional drivers [Dbzalete]

o

Synchmnous Asynchmnous

Mode

Mainboard 1.0 compatible

Mode

o) Bl

Quatech Mainboard

o

Binary
Mode

aps

Diamond Commitech

3 Double-click the group block Binary Mode.

The Library: xpclib/RS232/Binary Mode library opens.

=1of x|

E! Library: ®pcli nary Mode
File Edit Wiew Formab Help
Length Cone
RES232 Receis RS232 Send
COm COm
Enable Data
RE232 R5232
Binary Receive Binary Send
Fack Lnpack
Fack Unpack

2-95

2 Serial Communications Support

2-96

4 Drag and drop any of these blocks into your Simulink model.

RS232 Binary Receive Block

The RS232 Binary Receive Block was designed with generality in mind. To this
end, it supports reception of variable-length packets. A packet can be split
between two different RS232 Binary Receive blocks, say for a fixed-length
header followed by a variable-length body. However, the maximum possible
length of a packet has to be specified in the block, and the output from the block
is a vector whose width is equal to this maximum length.

If you drop a block into your model and double-click it, a Block Parameters
dialog box opens where you can modify the parameters for this block.

Z)Block Parameters: R5232 Binary Receive 7=

—rz232brec [mask] (link)]

—Parameters

COM port: ©
b amimumn width per packet:

n

Sample tirme:

K

0K I LCancel Help Apply

Block Parameters.

COM Port — From the list, select COM1, COM2, COM3, or COM4. This is the RS-232
port you want to receive data from. An RS232 Setup block must also exist for
the same COM port in your model.

Maximum width per packet — Enter a value that Simulink and Real-Time

Workshop use to allocate memory for the received data. This is also the width
of the data output. In case the actual data is less wide than the maximum, the
first few bytes of the output vector are the real data and the remaining bytes

are undefined.

xPC Target RS-232 Drivers [Conventional)

Sample time — Specifies how often the block is to be executed. In the example
dialog box shown above, the setting of -1 specifies an inherited sample time,
either from the base sample time of the model or from the block that the output
of this block goes to.

Block Inputs. The RS232 Binary Receive Block has two input ports:

¢ First input port — This port is labeled Length, and is the size of the packet
it will receive. This value should be less than or equal to the Maximum width
per packet length parameter. The effect of changing the Length input
during reception of one packet is undefined.

¢ Second input port — This port is labeled Enable, and turns the block on or
off. If the Enable input is nonzero, the block attempts to receive data,
otherwise it simply does nothing.

Block Outputs. The RS232 Binary Receive block has two output ports:

¢ First output port — This port is labeled Done, and is a function call output.
This output issues a function call as soon as the block has completed
receiving one packet. This can be used to drive a function call subsystem to
switch. For example, to switch from a “header-receive” block to a
“body-receive” block.

® Second output port — This port is labeled Data, and is the data output port.
The data is a vector of uint8s, and is a vector of width equal to that specified
in the Maximum width per packet parameter. Ifthe Length inputis less than
this width, the first number of bytes equal to Length are the real data and
the rest is garbage.

RS232 Binary Send Block

If you drop a block into your model and double-click it, a Block Parameters
dialog box opens where you can modify the parameters for this block.

2-97

2 Serial Communications Support

2-98

[Z]Block Parameters: R5232 Binary Send d |

—rs232bzend [maszk] [link]

—Parameters

COM port: ©
hd awiniunn width per packet:

1

Sample time:

|1

OF. I LCancel | Help | Apply

Block Parameters. COM Port — From the list, select COM1, COM2, COM3, or COM4.
This is the port you want to use to send the data.

Maximum width per packet — Enter the width of the incoming data. This
value is a constant, unlike the Receive block.

Sample time — Enter the frequency this data is sent.

Block Input

Input Port — This port represents the data to be transmitted. The data should
be a vector of type uint8 and of a Packet width specified in the dialog box.

RS232 Binary Pack Block
Same as UDP Pack block. See “UDP Pack Block” on page 6-9.

RS232 Binary Unpack Block
Same as UDP Unpack block. See “UDP Unpack Block” on page 6-10.

xPC Target RS-232 Drivers [Conventional)

Example Using R$232 Binary Mode 1/0

To show the flexibility provided by the RS232 Binary Receive block, the
following illustrates how this block can be used. The model that implements
this setup is provided with xPC Target. To access this model, type

xpcrs232bindemo

at the command prompt. This opens the model, which is essentially
self-documenting. Open each subsystem in the model to see what that part is
supposed to accomplish.

Here is an example of a messaging protocol that the model has to conform to.

The protocol consists of a one-byte header, followed by a variable-length body.
The header can have only two legal values, 12 and 17. If the header is 12, the
body is 6 bytes long, and consists of a uint16 followed by an int32 (in terms of
MATLAB data types). If the header is 17, the body is 4 bytes long, and consists
of a uint16 followed by an int16.

The model receives one header byte at a time, rejecting any invalid ones. As
soon as a valid header byte is received, the execution switches to the body block,
where the proper number of bytes is received. The data is then appropriately
decoded and displayed on an xPC Target Scope of type target. The model
should serve as an example of how this is done.

The basic algorithm is to receive a header byte and then compare it to the list
of known headers (12 and 17). The body length is set appropriately depending
on the header, and the “Done” function-call output of the header block is used
to trigger functioning of the body block (via the “distributor” function call
subsystem).

2-99

2 Serial Communications Support

2-100

GPIB I/O Support

xPC Target interfaces the target PC to a GPIB instrument bus using an external GPIB controller
from National Instruments. This external controller is connected to the target PC with a serial cable.
This chapter includes the following sections:

Introduction to GPIB Drivers (p. 3-2) Description of hardware connections, Simulink blocks,
and MATLAB message structures associated with the

Simulink blocks

Using GPIB Drivers (p. 3-5) Procedures to add GPIB driver blocks to your Simulink
model and create the message structures associated with
those blocks

GPIB Simulink Block Reference Description of block parameters for GPIB driver blocks

(p. 3-13)

GPIB MATLAB Structure Reference Description of the fields in the message structures,
(p. 3-16) shortcuts, and data types supported in the message fields

3 GPIB 1/O Support

Introduction to GPIB Drivers

xPC Target uses a model for I/O that includes both Simulink blocks, for the
I/0 drivers, and MATLAB structures for sequencing messages and commands.
This model provides increased flexibility and control over using only Simulink
blocks in your model. The topics in this section are

¢ “Hardware Connections for GPIB” on page 3-2 — Connect the target PC to a
GPIB-232CT-A controller from National Instruments.

¢ “Simulink Blocks for GPIB” on page 3-3 — Add setup, send, and receive
blocks to your Simulink model.

* “MATLAB Message Structures for GPIB” on page 3-3 — Create message
structures to sequence instructions to and from the GPIB controller.

Hardware Connections for GPIB

xPC Target supports connecting to a GPIB instrument bus with a
GPIB-232CT-A controller from National Instruments.

One end of the controller is connected to either the COM1 or COM2 port on the
target PC with a null modem cable. The other end is connected to the GPIB
instrument bus with a standard GPIB connector and cable.

Target PC

GPIB-232CT-A iy
RS-23249 |IEEE 488 Controller]

Q000 I GPIB

instrument
bus

GPIB Device |]

Introduction to GPIB Drivers

Simulink Blocks for GPIB

To support the use of GPIB, the xPC Target I/O library includes a set of GPIB
driver blocks. These driver blocks can be added to your Simulink model to
provide inputs and outputs to devices on a GPIB instrument bus.

¢ GPIB Setup — One setup block is needed for each GPIB controller. The
setup block does not have any inputs or outputs, but sends the initialization
and termination messages.

® GPIB Send/Receive — The send/receive block has inputs and outputs from
your Simulink model, and sequences both the send and receive messages.

MATLAB Message Structures for GPIB

Communication is through a series of messages passed back and forth between
the target PC and the GPIB controller. To accomplish this, the messages sent
to the GPIB controller must be in a format that the controller understands.
Likewise, the target PC must know how to interpret the data returned from the
GPIB controller.

xPC Target uses MATLAB structures to create messages and map the input
and output ports on the GPIB driver blocks to the data written and read from
the GPIB devices. The GPIB Setup block executes the messages in the
initialization structure after downloading the target application. The GPIB
Send/Receive block repeats the execution of the messages in the send/receive
structure during each sample interval. When the target application stops
running, the GPIB Setup block executes the messages in the termination
structure.

Below is an example of a send/receive message structure. The first message
writes a command to instruct the GPIB device to acquire a single data value,
while the second message sends a command to read that value and output the
result to the output port line coming from a GPIB driver block.

3 GPIB 1/O Support

GPIB_SePd_Receive

I | I
GPIB_SIend_Receive(l) GPIB_Send_Receive(1) ...GPIB_STnd_Receive(n)

Address - 16 Address

.Command - wrt’ .Command - rd 16
SendData - “: read?’ SendData -

InputPorts InputPorts

.RecData .RecData - ‘% £

.RdLength .RdLength - 20

.OutputPorts .OutputPorts - [1]
.OutputDataTypes .OutputDataTypes - {double}
Wait Wait

Timeout-0.05 .Timeout- 0.05

Currently, only two limitations exist. xPC Target does not support string data
types as input and output data types. Also, you must know the size and order
of data returned from a read command.

For more information on this example, see “Creating GPIB Message
Structures” on page 3-10.

Using GPIB Drivers

Using GPIB Drivers

xPC Target uses a combination of Simulink blocks and MATLAB structures to
support GPIB communication from your target application and target PC. The
topics in this section are

¢ “Adding GPIB Driver Blocks” on page 3-5 — Add the setup and send/receive
blocks you need to add to your Simulink model for GPIB communication.

® “Creating GPIB Message Structures” on page 3-10 — Create the initialize,
send/receive, and termination message structures you need in the MATLAB
workspace.

This section uses an example of a multimeter attached to a GPIB bus with an
address of 16. This multimeter needs the initialization command

:conf:volt:dc
to set the device to read DC voltages, and needs the command
:read?

during each sample interval to read one voltage value

Adding GPIB Driver Blocks

The GPIB driver blocks initialize and communicate directly with the GPIB
controller. The GPIB controller then communicates with the GPIB devices on
the instrument bus.

After you create a Simulink model, you can add GPIB driver blocks and define
the initialization, send/receive, and termination message structures.

1 In the MATLAB Command Window, type
xpclib

The xPC Target driver block library opens.
2 Double-click the GPIB group block.

A manufacturers window opens. Currently xPC target only supports GPIB
communication with a National Instruments controller.

3 GPIB 1/O Support

3 Double-click the National Instruments group block.

A window with blocks for GPIB drivers opens.

[Library: #pcnilib =10l x|
M =] | ibrary: ®penilib/GPIB N (=[S
File Edit Wew Format Help
GPIBEI2CTA GPIBEI2CTA
MNatianal Instrurments MNatianal Instrurments
WD Setup Send/Rece i
SGRIBE32CT-A GPIBEIECT-A 1

Alternatively, you could access the xPC Target block library from the
Simulink Library Browser. In the Simulink window, and from the View
menu, click Show Library Browser. In the left pane, double-click xPC
Target, double-click GPIB, and then click National Instruments.

4 Drag and drop a GPIB Setup block and a GPIB Send/Receive block to your
Simulink model.

Your model should look similar to the figure below. Note that the input and
output ports are not defined or visible on the blocks. The inputs and outputs
are defined in a MATLAB message structure, and are visible only after you

load that structure into the MATLAB workspace and update your Simulink
model.

Using GPIB Drivers

E! gpib_model

File Edit Wiew Simulation Format Tools Help

=0l x|

GPIBEE32CT-A
Mational Instrumeants
Setup

GPIBE32CT-A
Mational Instrurrents
Send/Recs e

GRIBE222GT-A

GPIB232CT-A1

5 Double-click the GPIB Setup block. Enter values that correspond to the DIP
switch settings you set on the GPIB-232CT-A controller. In the
Initialization Struct box, enter the name for the MATLAB structure this
block uses to send initialization messages to the GPIB device.

Note If you are not using an initialization or termination structure, enter

two single quotes.

For example, if the target PC is connected to COM1, and you set the switches
on the controller to 38400 baud, 8 data bits, and 1 stop bit, your Block
Parameter dialog box should look similar to the figure shown below.

3-7

3 GPIB 1/O Support

[=1Block Parameters: GPIB-232CT-A d |

—ra232zetup [mask] (link]

GFIB-232CT-A
Mational Instruments
Setup

—Parameters

GFIE address:
o
Part: | COM1

Baud rate: I 32400

Murmnber of data bits: I g

Murmber of ztop bits: I 1

Parity: I Mone

Lol Lef Lo Lef Lef Lo

Frataczal: I MHare

Send buffer size:
{1024

Receive buffer size:
1024

Initialization command structure;
|GPIB_Initialize

Termination command structune:

i

0K I LCancel | Help | Apply |

For more information on entering the block parameters, see “PC-DIO-24” on
page 22-8. For the procedure to create the initialization structure, see
“Creating GPIB Message Structures” on page 3-10.

6 Click OK. The Block Parameters dialog box closes.

7 Double-click the GPIB Send/Receive block. The Block Parameters dialog box
opens.

3-8

Using GPIB Drivers

8 From the Port list, select either COM1 or COM2. This is the port on the target
PC connected to the GPIB controller. In the Message Struct Name box,
enter the name for the MATLAB structure this block uses to send and
receive messages to the GPIB device. In the Sample Time box, enter the
same sample time or multiple of the sample time you entered for the fixed
step size in the Simulation -> Configuration Parameters dialog box Solver

pane.

Your Block Parameter dialog box should look similar to the figure shown

below.

E Block Parameters: GPIB-232CT-A 1

—re2dZzendrec [maszk) (link)

2%

GFIB-232CT-A
M atiohal Instruments
Send/Feceive

—Parameters

Part: | COM1

Meszage stucture:

|GPIB_Send_Receive

Sample tirme:

[

Ok LCancel |

Help

Apply |

For more information on entering the block parameters, see “PC-DI0O-24” on

page 22-8.

9 Click OK. The Block Parameters dialog box closes.

Your next task is to create the MATLAB message structures that the GPIB
driver blocks use to sequence commands to the GPIB controller. See “Creating

GPIB Message Structures” on page 3-10.

3-9

3 GPIB 1/O Support

Creating GPIB Message Structures

GPIB drivers use MATLAB structures to send and receive messages and to
map the input and output ports on the GPIB driver blocks to the data written
and read from the GPIB devices.

After you add GPIB driver blocks to your Simulink model, you can create the
message structures to communicate with the GPIB controller. You need to
create and load these structures into the MATLAB workspace before you build
your target application. The easiest way to create these structures is to create
an M-file and load that M-file into the MATLAB workspace.

1 In the MATLAB Command Window, and from the File menu, point to New,
and then click M-file.

A MATLAB text editor window opens.

2 Enter the initialization and send/receive messages. Each message is an
element in a MATLAB structure array with a series of fields. For
information and examples of these fields, see “GPIB Initialization and
Termination Message Structures” on page 3-17 and “GPIB Send/Receive
Message Structure” on page 3-18.

As an example, if you have a multimeter attached to a GPIB bus that has an
address of 16, needs the initialization command :conf:volt:dc to set the
device to read DC voltages, and uses the command :read? to read one
voltage value, you could type the following:

Note Field names in the structures are case sensitive.

GPIB Initialize(1).Command = 'wrt 16';

3-10

GPIB Initialize(1).SendData = ':conf:volt:dc';
GPIB_Send Receive(1).Address= 16;
GPIB_Send Receive(1).Command = 'wrt 16';
GPIB_Send_Receive(1).SendData = ':read?';

(1).

GPIB_Send_Receive

GPIB_Send_Receive(2).
GPIB_Send_Receive(2).
GPIB_Send_Receive(2).
GPIB_Send_Receive(2).

Timeout = 0.05;

Command = 'rd 16';
RecData = '&f';
RdLength = 20;
OutputPorts = [1];

Using GPIB Drivers

GPIB_Send_Receive(2).0OutputDataTypes = {'double'};
GPIB_Send_Receive(2).Timeout = 0.15;

This example did not need a termination structure. But if it did, the format
of the structure is the same as the initialization structure. For example, a
termination structure could have a message with the .Command and
.SendData fields.

GPIB_Termination(1).Command
GPIB_Termination(1).SendData

From the File menu, click Save As. In the Save As File dialog box, enter the
name of the M-file. For example, enter

GPIB_Messages.m
Close the text editing window.

In the MATLAB Command Window, type the name of the M-file you created
with the GPIB structures. For example, type

GPIB_Messages

MATLAB loads and runs the M-file to create the message structures in the
MATLAB workspace needed by the GPIB driver blocks.

Open your Simulink model, or press Ctrl+D.

The GPIB driver blocks are updated with the information from the
structures. For example, inputs and outputs defined in the structures are
now visible on the driver blocks.

Your model should look similar to the figure shown below.

3-11

3 GPIB 1/O Support

E!gpih_mudel =]

File Edit VYiew Simulation Format Tools Help

GPIBE32CT-A GPIBE32CT-A
Mational Instrumeants lational Instruments 1
Setup SendiRece e
GFPIBE32CTA GPIEE32CT-A 1

7 Set the PreLoadFcn for your Simulink model to load the message structures
when you open the model. For example, if you saved the message structures
in the M-file GPIB_messages, type

set_param(gcs, 'PreLoadFcn','GPIB_messages.m')
Note If you do not manually load the message structures before opening

your Simulink model, or have the message structures automatically loaded
with the model, the port connections to the GPIB driver blocks break.

Your next task is to build the target application and download it to the target
PC.

3-12

GPIB Simulink Block Reference

GPIB Simulink Block Reference

The GPIB-232CT-A is a GPIB controller external to the target PC. It is
connected to the target PC with an RS-232 cable.

xPC Target supports this controller with two driver blocks:

® “GPIB-232CT-A Setup Block” on page 3-13
® “GPIB-232CT-A Send/Receive Block” on page 3-15

Board Characteristics

Board name GPIB-232CT-A
Manufacturer National Instruments
Bus type N/A

Access method RS232

Multiple block instance support No

Multiple board support Yes

GPIB-232CT-A Setup Block

The setup block parameters must be set to match the jumper settings on the
GPIB-232CT-A controller.

Driver Block Parameters

Parameter Description
GPIB Enter the identification number for the GPIB controller.
address When the GPIB-232CT-A is turned on, the identification

number is set to 0.

Port From the list, select COM1, COM2, COM3, or COM4. This is the
serial connection the target PC uses to communicate with
the GPIB-232CT-A controller.

3-13

3 GPIB 1/O Support

3-14

Parameter

Description

Baud rate

Number of
data bits

Number of
stop bits

Parity

Protocol

Send buffer
size

Receive
buffer size

Initialization
command
struct

Termination
command
struct

From the list, select 115200, 57600, 38400, 19200, 9600,
4800, 2400, 1200, 600, or 300.

From the list, select 8 or 7.

From the list, select 1 or 2.

From the list, select None, 0dd, or Even.

From the list, select None or XOn/X0ff. If your serial device
does not support hardware handshaking, or your
application software requires XOn/XOff handshaking, you
might need to select XOn/XOff.

Enter the buffer size in bytes.

Enter the buffer size in bytes.

Enter the name of the structure containing the
initialization information. For example, enter

GPIB_Initialize

If you are not using initialization messages, enter two
single quotes in this box. For information on creating this
structure, see “Creating GPIB Message Structures” on
page 3-10.

Enter the name of the structure containing the
termination information.

GPIB Simulink Block Reference

GPIB-232CT-A Send/Receive Block

Driver Block Parameters

Parameter Description

Port From the list, select COM1, COM2, COM3, or COM4. This is the
serial connection the target PC uses to send and receive
data with the GPIB-232CT-A controller.

Message Enter the name of the MATLAB structure containing the

structure messages to be sent to the GPIB controller.

Sample Enter the base sample time or a multiple of the base sample

time time you entered for the fixed step size in the Simulation ->

Configuration Parameters dialog box Solver pane.

3-15

3 GPIB 1/O Support

GPIB MATLAB Structure Reference

You do not use all message fields in all messages. For example, a message to
send data would not use the message field .RecData, but would use the field
.SendData. However, knowing the possible message fields is helpful when you
are creating any of the message structures.

This section includes the following topics:

¢ “GPIB Initialization and Termination Message Structures” on page 3-17 —
Description of the message fields for the initialization and termination
structures associated with the GPIB Setup block

® “GPIB Send/Receive Message Structure” on page 3-18 — Description of the
message fields for the send/receive structure associated the GPIB
Send/Receive block

® “Shortcuts and Features for Messages” on page 3-21 — Shortcuts to using
the GPIB wrt and rd commands

® “Supported Data Types for Message Fields” on page 3-23 — List of supported
data types and the format you use to indicate those types in message fields

3-16

GPIB MATLAB Structure Reference

GPIB Initialization and Termination Message
Structures

The formats for the initialization and termination structures are similar to the
send/receive structure except for a few differences:

The initialization and termination structures do not need to receive or send
information through driver block ports on your Simulink model. Therefore, the
initialization and termination structures do not use the message fields
.InputPorts, .OutputPorts, .RecData, and .OutputDataTypes.

Below is a description of the possible message fields for the initialization and
termination structures. The order of the message fields does not matter.
However, the field names are case sensitive.

Message Description

Fields

Address Sets the GPIB address for the device being accessed and
defines the keyword ADDR. Default value = [].

Command GPIB command sent to a GPIB device. Default value = ''.

SendData Data sent with the GPIB command. Default value = ''.

RdLength Defines the length of the acknowledge string, in bytes, from

the GPIB controller.

Ack The expected acknowledgment string from the controller as
a result of an initialization or termination message. If this
value is set, you need to set the time-out value. If no string
is defined, then no acknowledge is expected.

Timeout Time, in seconds, allowed for the GPIB controller to respond
to a message and send back an acknowledge string. Default
value = 0.049 seconds.

If the time-out value is exceeded, a time-out error is
reported.

3-17

3 GPIB 1/O Support

GPIB Send/Receive Message Structure

Below is a description of the possible fields for the send/receive message
structure. The order of the message fields in a message does not matter.
However, the field names are case sensitive.

Message
Fields

Description

Address

Command
SendData

InputPorts

Sets the GPIB address for the device being accessed. After
the GPIB address is set, the remaining messages use this

address value until another message changes the address

value. Default value = 0.

The keyword ADDR is equal to the value in the message
field .Address. You can use this keyword in the message
fields .Command or .SendData to replace the numerical value
of the GPIB address. For example, you can write

GPIB_Send_Receive(1).Command="'wrt 16"';

Or you can write

GPIB_Send Receive(1).Address = 16;
GPIB_Send Receive(1).Command='wrt ADDR';

GPIB command sent to a GPIB device. Default value = ''.
Data sent with the GPIB command. Default value = ' '.

Defines the input ports for the driver block. Data from the
input ports is sent to the GPIB device with the message
fields .Command and .SendData. Default value = []. The
highest number you enter determines the number of input
ports on the driver block.

For example, the following message creates two input ports
on the driver block, and passes data from the input ports to
the read command.

GPIB_Send Receive(1).Command = 'rd #%d %d';
GPIB_Send Receive(1).InputPorts= [1 2];

3-18

GPIB MATLAB Structure Reference

Message
Fields

Description

RecData

RdLength

OutputPorts

The first port is used to dynamically provide the length of
the receive string, while the second port provides the value
of the GPIB device.

Format of the data received from the GPIB device. Default
value = ' '. The format of this statement is very similar to a
scanf statement. The read data is mapped to the output
ports defined in the field .OutputPorts. If a negative output
port is given, the data is read in, but not sent to any output
port.

For example, to read from a GPIB device with an address of
16, one floating-point number with a maximum number of
bytes of 20, and send the data to the first driver block
output, type the following:

GPIB_Send_Receive(1).Command = 'rd #20 16';
GPIB_Send_Receive(1).RecData = 'Sf';
GPIB_Send_Receive(1).OutputPorts = [1];

Defines the length of the data, in bytes, received with the
read command and defines the keyword LENGTH. Default
value = 0.

Defines the output ports from the driver block. Data
received from a GPIB device with the read command is sent
to the output ports. Default value = []. The highest
number you enter determines the number of output ports on
the driver block.

For example, to use output ports 1 and 2 on the driver block,
type
GPIB_Send_Receive.OutputPorts = [1 2];

3-19

3 GPIB 1/O Support

Message Description
Fields

OutputData Defines the data types for the output ports on the driver
Types block. Default value = [].

If this value is not defined, and there are output ports, the
default type is double. Also, if there are more output ports
than output data types listed, the default type for the
undefined ports is double.

Wait The amount of time, in seconds, to wait before executing the
next message. This value is limited to 50 milliseconds.
Default value = 0.

Timeout Time, in seconds, the driver block waits for data to be
returned. Default value = 0.049.

3-20

GPIB MATLAB Structure Reference

Shortcuts and Features for Messages
xPC Target defines the abbreviations wrt and rd to make message writing with
GPIB commands easier. When the message interpreter sees the statements

® Structure_name(index).'wrt"', it is replaced with
Structure_name(index).'wrt ADDR'. For example, you could write

GPIB Initialize(1).Command = 'wrt 8';
or you could write

GPIB Initialize(1).Address = 8;

GPIB Initialize(1).Command = 'wrt';

The following message fields, with the keyword ADDR, use the address value
8 defined in the message field .Address.

® Structure_name (index).Command = 'rd', it is replaced with
Structure_name(index).Command = 'rd #LENGTH ADDR'. For example, you
could write
GPIB_Initialize(1).Command = 'rd #10 8';

or you could write

GPIB_Initialize(1).Address 8;
GPIB_Initialize(1).RdLength = 10
GPIB_Initialize(1).Command = 'wrt';

If you enter numerical values in the wrt and rd commands, then the
command uses those values instead of the values in the variables ADDR and
LENGH. For example, the following message uses the GPIB address 10 even
though the value for ADDR is defined as 8.

GPIB_Initialize(1).Address = 8;
GPIB_Initialize(1).Command = 'wrt 10';

Changes to the Read Command — When a GPIB rd command is sent to the
GPIB controller, the controller responds with the data and length of data. To
make using this command easier, the xPC Target driver block discards the
length of data information. For example, using the normal GPIB rd command,
you could write

GPIB Message(1).Command = 'rd #20 16';
GPIB Message(1).RecData = 'S%f%d';

3-21

3 GPIB 1/O Support

GPIB_Message(1).OutputPorts = [1 -1];

The code %d reads the length of data and the -1 discards the length. Using the
modified xPC Target rd command, you would write

GPIB_message(1).Command ‘'rd #20 16';
GPIB_message(1).RecData = 'Sf';
GPIB_message(1).OutputPorts = [1];

Automatic Addition of Escape Characters — The message interpreter
automatically places the correct escape characters at the end of the message
fields .Command, .SendData, and .Ack. However, if you add the escape
characters, then the message interpreter does not add additional characters.

The escape characters are \\, \a, \b, \f, \r, \t, \v, \', \'', and \n.
For example, you can write

GPIB_Message.Command = ‘'wrt 16\n';
GPIB_Message.SendData = ':conf:volt:dc\r';
GPIB_Message.Ack = '10\n\r';

or you can write the following, and the appropriate escape characters are
added.

GPIB_Message.Command = 'wrt 16';
GPIB_Message.SendData = ':conf:volt:dc';
GPIB_Message.Ack = '10';

3-22

GPIB MATLAB Structure Reference

Supported Data Types for Message Fields

The following table lists the supported data types for the message fields
.SendData and .Recdata:

Format

Description

%Cc and %C

Single character and wide character
Signed decimal integer

Unsigned decimal integer

Unsigned octal integer

Unsigned hexadecimal integer using 'abcdef' or
'ABCDEF' for the hexadecimal digits.

Exponential format using e or E
Floating point

Signed value printed in f or e format depending on
which is smaller

Signed value printed in f or E format depending on
which is smaller

3-23

3 GPIB 1/O Support

3-24

CAN I/0 Support

This chapter includes the following sections:

Introduction (p. 4-3)

CAN Driver Blocks for the CAN-AC2
(ISA) with Philips PCA 82C200 CAN
Controller (p. 4-7)

CAN Driver Blocks for the CAN-AC2
(ISA) with Intel 82527 CAN Controller
(p. 4-14)

CAN Driver Blocks for the
CAN-AC2-PCI with Philips SJA1000
CAN Controller (p. 4-22)

CAN Driver Blocks for the
CAN-AC2-104 (PC/104) with Philips
SJA1000 CAN Controller (p. 4-30)

Constructing and Extracting CAN
Data Frames (p. 4-38)

Detecting Time-Outs When Receiving
CAN Messages (p. 4-47)

Model Execution Driven by CAN
Messages (Interrupt Capability of CAN
Receive Blocks) (p. 4-49)

xPC Target offers support to connect a target PC to a
CAN network using the CAN driver blocks provided by
the xPC Target I/O block library. This support is for I/O
device drivers for the CAN-AC2-ISA and CAN-AC2-PCI
boards from Softing GmbH (Germany).

The driver blocks described here support the CAN-AC2
(ISA) without piggyback modules.

The driver blocks described here support the CAN-AC2
(ISA) with piggyback modules.

The driver blocks described here support the
CAN-AC2-PCI.

The driver blocks described here support the
CAN-AC2-104 (PC/104).

CAN data frames have a maximum size of 8 bytes (64
bits). For the CAN driver blocks found in the xPC Target
I/0 block library, Simulink signals of data type double are
used to propagate data frames as an entity.

The Receive driver blocks for all CAN boards allow you to
output the timestamp at which the latest corresponding
CAN message has been received.

In certain applications, the model (target application)
execution is driven by the pace of an incoming CAN
message.

4 N 1/O Support
PP

Defining Initialization and
Termination CAN Messages (p. 4-53)

CAN-AC2 and CANopen Devices
(p. 4-55)

The CAN Setup driver blocks for all supported CAN
boards allow the definition of CAN messages to be sent
out during initialization and termination of the target
application.

xPC Target CAN-AC2 supports CAN specification 2.0a
and 2.0b but this does not generally include the CANopen
protocol on driver level. Nevertheless it is possible to
access CANopen devices by the CAN-AC2 drivers in a
general way.

Introduction

Introduction

xPC Target offers support to connect a target PC to a CAN network using the
CAN driver blocks provided by the xPC Target I/O block library. This support
is for I/O device drivers for the CAN-AC2-ISA and CAN-AC2-PCI boards from
Softing GmbH (Germany). The CAN driver library allows xPC Target
applications to connect to any CAN field bus network for I/O communication or
real-time target-to-target communication. This topics in this section are

¢ “xPC Target CAN Library” on page 4-3
® “CAN-AC2” on page 4-5

® “CAN-AC2-PCI” on page 4-6

® “CAN-AC2-104” on page 4-6

xPC Target CAN Library

The drivers support CAN specifications 2.0A and 2.0B and use the dynamic
object mode of the CAN-AC2 firmware to achieve maximum real-time
performance.

The library supports the following CAN boards from Softing GmbH, Germany.

Board Name Form Identifier Range Multiple
Factor Board Support
CAN-AC2 ISA Standard (& Extended with ~ No
piggyback module)
CAN-AC2-PCI PCI Standard & Extended Yes (up to 3)
CAN-AC2-104 PC/104 Standard & Extended Yes (up to 3)

For more information on the board specifications, visit
http://www.softing.com.

4 N 1/O Support
PP

The xPC Target CAN library intentionally restricts its support to Softing
boards with two CAN ports (boards with one channel would be available as
well). This is because the two-port versions allow you to check the correct
functioning of the board and drivers by just connecting the first CAN port to
the second CAN port. This forms a loop-back without you needing to connect
the board to a “real” CAN-network. The xpcdemos directory contains simple
loop-back test models to test the ISA, PCI, and PC/104 boards. Type the
following commands to open the corresponding test models.

Model Name (Command) Board
Xxpccanisa CAN-AC2
Xpccanpci CAN-AC2-PCI
xpccanpc104 CAN-AC2-104

The size of the driver code of the CAN boards supported by the xPC Target
block library is significant, and because not all xPC Target applications will use
CAN, the CAN library code is not linked by default when building a target
application. This makes target applications smaller if no CAN communication
functionality is needed. If the model to be built contains CAN driver blocks,
xPC Target links in the appropriate CAN library code when necessary.

For each CAN board three driver blocks are provided:

® A setup block, which defines the type of physical connection (baud rate and
so forth). Exactly one instance of the setup block must be defined in a model
for each physically installed CAN board.

¢ A send block, which transmits (sends) the data entering the block’s input
ports to the connected CAN network. One or more instances of the Send block
can be used in a model.

® A receive block, which retrieves (reads) CAN messages received by the board
and outputs the data at the corresponding output ports. One or more
instances of the Receive block can be used in a model.

The maximum size of the data frame of a CAN message is 8 bytes. This is the
same size as the C data type double uses on PC-compatible systems. At the
same time, the double data type is the default data type used for Simulink
signals. Therefore the CAN data frame within a Simulink model can be easily

Introduction

represented by a scalar Simulink signal even if the data frame has nothing in
common with a double floating point value. The xPC Target CAN library
provides a Utility sublibrary that offers bit-packing and bit-unpacking blocks.
These blocks are used to pack data types other than doubles into 64 bits (8
bytes or a double) as well as for the opposite operation. This is discussed in
greater detail below. What is important for now is that CAN data frames are
represented by Simulink signals of data type double.

All drivers for the supported CAN boards program the boards for the so-called
dynamic object mode. This is one of three modes the CAN board firmware from
Softing can operate in. For a more detailed discussion of the three modes see
the board’s user manual. Dynamic object mode is best suited for real-time
environments where each component of the application must have
deterministic time behavior. This is the case for xPC Target, and that is the
main reason why this mode has been chosen over the other two modes, which
are FIFO and static object mode.

The following paragraphs summarize the differences among the three
supported Softing boards.

CAN-AC2

This is the CAN board for the ISA bus offering two CAN ports (highspeed). In
its standard hardware configuration it uses the Philips PCA 82C200 CAN
controller, which supports standard identifiers only. Piggyback modules are
available (one for each port) that replace the Philips CAN controllers with Intel
82527 CAN controllers. The Intel controllers support both standard and
extended identifiers. The board is a memory-mapped device and uses a 16 KB
address range between 640 KB and 1 MB. We do not recommend this board for
new projects; use the CAN-AC2-PCI which is described below instead. Softing
plans that no new firmware versions are planned for this board.

4 N 1/O Support
PP

CAN-AC2-PCI

This is the CAN board for the PCI bus offering two CAN ports. The CAN
controllers used on the board are the SJA1000 from Philips. In its standard
hardware configuration the board is designed for both standard and extended
identifiers for high-speed CAN. Piggyback modules are available (one for each
port) that add low-speed CAN support to switch between high-speed and
low-speed CAN. The board is a memory mapped PCI device that uses 64 KB of
address space. The address space is assigned automatically by the PCI BIOS of
the target PC and lies usually in the range between 2 GB and 4 GB. Any new
projects where a desktop PC is used as the target system should use this board
and not the ISA board described above.

CAN-AC2-104

This is the CAN board for the PC/104 bus offering two CAN ports. The CAN
controllers used on the board are the SJA1000 from Philips. The board offers
both standard and extended identifiers for high-speed CAN. A low-speed CAN
hardware extension is not available. The board is both I/O mapped and
memory mapped. The I/O-mapped area uses a 3 B address range and the
memory-mapped area uses a 4 KB address range between 640 KB and 1 MB.

CAN Diriver Blocks for the CAN-AC2 (ISA) with Philips PCA 82C200 CAN Controller

CAN Driver Blocks for the CAN-AC2 (ISA) with Philips PCA
82C200 CAN Controller

The driver blocks described here support the CAN-AC2 (ISA) without
piggyback modules. The Philips PCA 82C200 chip is used as the CAN
controller in this configuration and supports the standard identifier range
only. The driver block set for this board is found in the xPC Target I/O block
library in the group CAN/Softing.

E!Library: wpclib/CAM,Softing 101 =l
File Edit Wew Format Help

IS T I S RS

CAN-ACEZ-I5A CAM-ACE-ISA CAN-AGZ-FCI CAN-ACGE-104
Philips G200 Int=| 527 SJA 1000 SJA 1000

The first group, Phillips C200, contains the three available CAN blocks: Setup,
Send, and Receive.

E!Library: wpclib, 101 =l

File Edit Wew Format Help

CAN-AGESA
CAN T SCAN 2
Standand

Setup

CAN-AGE-ISA
a GAM 1 -Send
Standard 11bit

Send

CAN-AGE-ISA
CAN 1 - Receive a
Standard 11bit

Receive

4 N 1/O Support
PP

Setup Driver Block

The Setup block defines general settings of the installed CAN board. Because
the CAN driver blocks for this ISA board only support a single physical board
for each target system, this block can only be used once (one instance) in a
model.

—canacdizazetup [mazk)] [link]

Softing
CAM-AC2-SA
with Philipz PCA 82C200
—Parameters
CAM 1 - baud rate: |RIENEEE h
CaM 1 - uzer defined baud rate;
1143
CaM 2 - baud rate; I 1 MBaud LI
CAM 2 - uzer defined baud rate:
[1.1.4.2]

Initialization command structure:

fi

Termination:

i

temary baze address [i.e. 0xd000): I 2 [16k). D4000-D7FFF ;I

0K I LCancel | Help | Apply |

CAN 1 - baud rate — Defines the most common baud rates for CAN port 1. If
special timing is necessary (baud rate), select the value User defined. In this
case, use CAN 1 - user defined baud rate to provide the four values for the
timing information. The vector elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

CAN 2 - baud rate — Defines the most common baud rates for CAN port 2. If
special timing is necessary (baud rate), the value User defined can be selected.

4-8

CAN Diriver Blocks for the CAN-AC2 (ISA) with Philips PCA 82C200 CAN Controller

In this case, use CAN 1 - User defined baud rate to provide the four values for
the timing information. The vector elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

Initialization command structure and Termination — Defines CAN
messages sent during initialization and termination of the Setup block.

Memory base address — Defines the memory base address of the board.
Hardware jumpers on the board itself set the address range that the board
uses. Refer to the Softing user manual on how to set the various address
ranges. The setting in the dialog box must correspond to the jumper setting;
otherwise the board cannot be accessed. The available address ranges (memory
base address) in the pop-up menu are those supported by the board. Because
the xPC Target kernel only reserves a subrange (C0000 to DC000) of the

640 KB to 1 MB address range for memory-mapped devices, the valid settings
when used within a xPC target system are

1 (16k): DOOOO-D3FFF
2 (16k): D4000-D7FFF

The board allows you to terminate each of the two CAN ports separately by
means of hardware jumpers. Refer to the Softing user manual on how to set the
jumpers. Both CAN ports must be terminated properly when you use the
loop-back model provided to test the board and drivers.

4-9

4 N 1/O Support
PP

4-10

Send Driver Block

The Send driver block transmits data to a CAN network from within a block
model.

[Z)Block Parameters: Send d |

—canacisasend [mask] [link)

Safting
CaM-AC2-154
with Philips PCA 82C200

—Parameters

CAM port; [

|dentifiers:

[

Data frame sizes:

Jie1

[Show status output ports

Sample tirme:
joom

0K I LCancel | Help | Apply |

CAN port — Selects the CAN port to which the CAN message is sent.

Identifiers — Defines the identifiers of the CAN messages sent by this block.
It must be a row vector where the elements define a set of standard identifiers.
Each element must be in the range between 0 and 2031. The number of
identifiers for each CAN port in a model per physical CAN board cannot exceed
200 (limitation of the firmware’s dynamic object mode). The number of
elements defined here also specifies the number of input ports of the block. The
block icon displays the selected identifier at each input port. Each input port
accepts the data frame to be sent along with the CAN message. The signal
entering each input port must be a scalar of type double representing the
maximum size of 8 bytes of a CAN message data frame.

Data frame sizes — Defines the data frame size for each identifier (CAN
message) in bytes. It must be a row vector in which the elements define a set of
data frame sizes. Each element must be in the range between 1 and 8. If the
data frame sizes for all the identifiers defined in the Identifiers parameter
must be the same, you can provide the size as a scalar only and scalar

CAN Diriver Blocks for the CAN-AC2 (ISA) with Philips PCA 82C200 CAN Controller

expansion applies. If the sizes are different for at least two identifiers (CAN
messages), you must provide one size element for each identifier defined in the
Identifiers parameter. Therefore the length of the two vectors must be the
same.

Show status output ports — Enables status output ports for each identifier
(CAN message). If the check box is checked the block shows as many output
ports as input ports. The data type of each output port is a double and the value
is identical to the return argument of function CANPC_write object(...),
described in the Softing user manual. Refer to the manual for more
information.

Sample time — Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Send block in the model as needed. For
example, by using two instances of the block with different sample times, you
can send CAN messages out at different rates. Or you can use multiple
instances to structure your model more efficiently.

Receive Driver Block

The Receive driver block retrieves data from a CAN network to be used within
a block model.

E Block Parameters: Receive x|

—canacdizareceive [mazk] [link)

Softing
CAM-AC2-SA
with Philips PCA 82C200

—Parameters

CAM port: | CAN 1 [
Identifiers:

Jio1

Cutput port optiong: I Diata ﬂ

[Generate interupts

Sample tirme:
joom

ok I LCancel Help

4-11

4 N 1/O Support
PP

CAN port — Defines the CAN port from which the CAN messages are
retrieved.

Identifiers — Defines the identifiers of the CAN messages retrieved by this
block. It must be a row vector in which the elements define a set of standard
identifiers. Each element must be in the range between 0 and 2031. The
number of identifiers for each CAN port in a model per physical CAN board
cannot exceed 200 (limitation of the firmware’s dynamic object mode). The
number of elements defined here, also defines the number of output ports of the
block. The block icon displays the selected identifier at each output port. Each
output port outputs the data frame being retrieved along with the CAN
message. The signal leaving each output port is a scalar of type double
representing the maximum size of 8 bytes of a CAN message data frame.

Output port options — Defines the type of retrieved data output at each
output port. Three different types of data can be output, data frame, status,
and timestamp. The status information is of type double and is identical to the
return value of function CANPC_read rcv_data(...), described in the Softing
user manual. Refer to the manual for more information. The timestamp
information is of type double and outputs the latest time at which a

CAN message with the corresponding identifier was received. This time
information in seconds (with a resolution of 1 microsecond) can be used to
implement time-out logic within your model.

The pop-up menu lets you select the output information output at each output
port of the block. If you select Data, each output port signal is a scalar only. If
you select Data - Status, each output port signal is a vector with two elements
in which the first element contains the data frame and the second element the
status information. If you select Data - Status - Timestamp, each output port
signal is a vector with three elements in which the first element contains the

data frame, the second element the status information, and the third element
the timestamp.

Generate interrupts — Defines whether the CAN messages defined in this
instance of the block initiate an interrupt from the CAN board each time they
are received. If selected, you can use CAN messages to control model (target
application) execution.

Sample time — Defines the sample time at which the Receive block is executed
during a model (target application) run.

4-12

CAN Diriver Blocks for the CAN-AC2 (ISA) with Philips PCA 82C200 CAN Controller

You can use as many instances of the Receive block in the model as needed. For
example, by using two instances of the block with different sample times, you
can retrieve CAN messages at different rates. Or you can use multiple
instances to structure your model more efficiently.

4-13

4 N 1/O Support
PP

CAN Driver Blocks for the CAN-AC2 (ISA) with Intel 82527
CAN Controller

The driver blocks described here support the CAN-AC2 (ISA) with piggyback
modules. The Intel 82527 chip is used as the CAN controller in this
configuration and supports both standard and extended identifier ranges in
parallel. The driver block set for this board is found in the xPC Target I/O block
library in the group CAN/Softing.

E!Library: wpclib/CAN/Softing 10| =|
File Edit Wew Formab Help

B T 1 I S B e

CAMN-ACEZ-ISA CAN-AGERISA CAN-AGCZ-FGI CAN-AGE-104
Philips G200 Intz1 527 SJA 1000 SJa 1000

The second block, CAN-AC2-ISA Intel527, contains the three available CAN
blocks: Setup, Send, and Receive.

4-14

CAN Driver Blocks for the CAN-AC?2 (ISA) with Intel 82527 CAN Controller

E!Library: wpclib;.. 10| =|

File Edit Wew Format Help

CAN-AGEISA E
CARN TS CAN 2
Standamd / Extended

Setup

CAN-AGE-ISA
0 CAN 1 - Send
Standard 11bit

Send

CAN-AGE-ISA
GAN 1 - Receive 0
Standard 11bit

Rece e

Setup Driver Block

The Setup block defines general settings of the installed CAN board. Because
the CAN driver blocks for this board only supports a single physical board for
each target system, this block can only be used once (one instance) in a model.

4-15

4 N 1/O Support
PP

—canacdizassetup [(mazk] [link]

Softing
CAM-AC2-SA
with ntel 82527
—Parameters
CAM 1 - baud rate: |RIENEEE h
CaM 1 - uzer defined baud rate;
1143
CaM 2 - baud rate; I 1 MBaud LI
CAM 2 - uzer defined baud rate:
[1.1.4.2]

Initialization command structure;
fi
Termination:

i
temary baze address [i.e. 0xd000): I 2 [16k). D4000-D7FFF ;I

0K I LCancel | Help | Apply |

CAN 1 - baud rate — Defines the most common baud rates for CAN port 1. If
special timing is necessary (baud rate), the value User defined can be selected.
In this case, use the CAN 1 - user-defined baud rate parameter to provide the
four values for the timing information. The vector elements have the following
meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

CAN 2 - baud rate — Defines the most common baud rates for CAN port 1. If
special timing is necessary (baud rate), the value User defined can be selected.
In this case, use CAN 1 - user-defined baud rate parameter the four values for
the timing information. The vector elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

4-16

CAN Driver Blocks for the CAN-AC?2 (ISA) with Intel 82527 CAN Controller

For more information about these values, see the Softing user manual for this
board.

Initialization command structure and Termination — Define CAN
messages sent during initialization and termination of the Setup block.

Memory base address — Defines the memory base address of the board. The
address range used by the board must be set by hardware jumpers on the board
itself. Refer to the Softing user manual on how to set the various address
ranges. The setting in the dialog box must correspond to the jumper setting;
otherwise the board cannot be accessed. The available address ranges (memory
base address) in the pop-up menu are those supported by the board. Because
the xPC Target kernel only reserves a subrange (C0000 to DC000) of the

640 KB to 1 MB address range for memory-mapped devices, the valid settings
when used within a xPC Target system only are

1 (16k): DOOOO-D3FFF
2 (16k): D4000-D7FFF

The board allows you to terminate each of the two CAN ports separately by
means of hardware jumpers. Refer to the Softing user manual on how to set the
jumpers. Both CAN ports must be terminated properly when you use the
loop-back model provided to test the board and drivers.

4-17

4 N 1/O Support
PP

4-18

Send Driver Block

The Send driver block transmits data to a CAN network from within a block
model.

[)Block Parameters: Send d |

—canacisaesend [mask] [(link]

Safting
CaM-AC2-154
with Intel 82527

—Parameters

CAM port; [

CaM identifier range: | Standard [171-bit) LI
|dentifiers:

[

Data frame sizes:

Jie1

[Show status output ports

Sample tirme:
joom

0K I LCancel | Help | Apply |

CAN port — Selects the CAN port to which the CAN message is sent.

CAN identifier range — Selects the identifier range of the CAN messages sent
by this block instance. If an application makes use of mixed standard and
extended identifier ranges, you must use at least two instances of this block,
each defining the corresponding identifier range.

Identifiers — Defines the identifiers of the CAN messages sent by this block.
It must be a row vector in which the elements define a set of either standard or
extended identifiers. Each element must be in the range between 0 and 2031
for standard identifiers or 0 and 2™ -1 for extended identifiers. The number of
identifiers for each CAN port in a model per physical CAN board cannot exceed
200 (limitation of the firmware’s dynamic object mode). The number of
elements defined here also defines the number of input ports of the block. The
block icon displays the selected identifier at each input port. Each input port
accepts the data frame to be sent along with the CAN message. The signal

CAN Driver Blocks for the CAN-AC?2 (ISA) with Intel 82527 CAN Controller

entering each input port must be a scalar of type double representing the
maximum size of 8 bytes of a CAN message data frame.

Data frame sizes — Defines the data frame size for each identifier (CAN
message) in bytes. It must be a row vector where the elements define a set of
data frame sizes. Each element must be in the range between 1 and 8. If the
data frame sizes for all identifiers defined in the Identifiers parameter must
be the same, you can provide the size as a scalar only and scalar expansion
applies. If the sizes are different for at least two identifiers (CAN messages),
you can provide one size element for each identifier defined in the Identifiers
parameter. Therefore the length of the two vectors must be the same.

Show status: Output ports — Enables status output ports for each identifier
(CAN message). If the check box is checked, the block shows as many output
ports as input ports. The data type of each output port is a double and the value
is identical to the return argument of function CANPC_write object(...),
described in the Softing user manual. Refer to the manual for more
information.

Sample time — Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Send block in the model as needed. For
example, by using two instances of the block, you can send CAN messages at
different sample times. Or you can use multiple instances to structure your
model more efficiently.

4-19

4 N 1/O Support
PP

4-20

Receive Driver Block

The Receive driver block retrieves data from a CAN network to be used within
a block model.

E Block Parameters: Receive x|

—canacdizasreceive [mazk] (link)

Softing
CAM-AC2-SA
with ntel 82527

—Parameters

CAM port: I CeM

Lel Lef

CAM identifier range: I Standard [11-bit)

|dentifiers:
[0
COutput port options: I D ata LI

[~ Generate intermupts

Sample tirme:
joom

0K I LCancel | Help |

CAN port — Selects the CAN port from which to retrieve the CAN messages.

CAN identifier range — Selects the identifier range of the CAN messages
retrieved by this block instance. If an application makes use of mixed standard
and extended identifier ranges, you must use at least two instances of this
block, each defining the corresponding identifier range.

Identifiers — Defines the identifiers of the CAN messages retrieved by this
block. It must be a row vector in which the elements define a set of either
standard or extended identifiers. Each element must be in the range between
0 and 2031 for standard identifiers or 0 and 2% - 1 for extended identifiers.
The number of identifiers for each CAN port in a model per physical CAN board
cannot exceed 200 (limitation of the firmware’s dynamic object mode). The
number of elements defined here also defines the number of output ports of the
block. The block icon displays the selected identifier at each output port. Each
output port outputs the data frame being retrieved along with the CAN

CAN Driver Blocks for the CAN-AC?2 (ISA) with Intel 82527 CAN Controller

message. The signal leaving each output port is a scalar of type double
representing the maximum size of 8 bytes of a CAN message data frame.

Output port options — Defines the type of retrieved data output at each
output port. Three different types of data can be output, data frame, status,
and timestamp. The status information is of type double and is identical to the
return value of function CANPC_read rcv_data(...), described in the Softing
user manual. Refer to the manual for more information. The timestamp
information is of type double and outputs the latest time at which a

CAN message with the corresponding identifier was received. This time
information in seconds (with a resolution of 1 microsecond) can be used to
implement time-out logic within your model.

The pop-up menu lets you select the output information output at each output
port of the block. If you select Data, each output port signal is a scalar only. If
you select Data - Status, each output port signal is a vector with two elements
in which the first element contains the data frame and the second element the
status information. If you select Data - Status - Timestamp, each output port
signal is a vector with three elements in which the first element contains the

data frame, the second element the status information, and the third element
the timestamp.

Generate interrupts — Defines whether the CAN messages defined in this
instance of the block initiate an interrupt from the CAN board each time they
are received. If selected, you can use CAN messages to control model (target
application) execution.

Sample time — Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Receive block in the model as needed. For
example, by using two instances of the block, you can send CAN messages at
different sample times. Or you can use multiple instances to structure your
model more efficiently.

4-21

4 N 1/O Support
PP

CAN Driver Blocks for the CAN-AC2-PCI with Philips
SJA1000 CAN Controller

The driver blocks described here support the CAN-AC2-PCI. The Philips
SJA1000 chip is used as the CAN controller in this configuration and supports
both standard and extended identifier ranges in parallel. The driver block set
for this board is found in the xPC Target I/O block library in the group
CAN/Softing.

E!Library: wpclib/CAN/Softing 10| =|
File Edit Wew Formab Help

B T 1 I S B e

CAMN-ACEZ-ISA CAN-AGERISA CAN-AGCZ-FGI CAN-AGE-104
Philips G200 Intz1 527 SJA 1000 SJa 1000

The third block group, CAN-AC2-PCI SJA 1000, contains the three available
CAN blocks: Setup, Send, and Receive, plus a FIFO Mode block, which is
discussed in Chapter 5, “CAN I/O Support for FIFO.”

4-22

CAN Driver Blocks for the CAN-AC2-PCI with Philips SJATO00 CAN Controller

Z)Library: #pclib/.../Softing /CAN-AC o [w] =4
File Edit Wiew Format Help

CAN-ACE-PCI B1
CARN TS CAN 2
Standamd / Extended

Setup

CAN-ACGE-PCI B
0 CAN 1 - Send E)—

Standard 11bit

Send FIFD hiode

CAN-ACZ-PCI B
GAN 1 - Receive 0
Standard 11bit

Rece e

Setup Driver Block

The Setup block defines general settings of the installed CAN boards. The CAN
driver blocks for this board support up to three boards for each target system,
making up to six CAN ports available. For each board in the target system, you
must use exactly one Setup driver block.

4-23

4 N 1/O Support
PP

4-24

—canacZpoizetup [mask] (link]

Safting
Cam-aC2-PCI
with 5J41000

—Parameters

Boarc: [

CAN 1 - physical bus: | Highspeed (150 11898] |

CaM 1 - baud rate; I 1 MBaud LI

CaM 1 - user defined baud rate:
11,431

CAN 2 - physical bus: | Highspeed (150 11338)

|
CAN 2- baud rate: [1 MBaud |
CaMN 2 - user defined baud rate:
f1.1.43]
Initialization command structure:
i
Termination:
fi

PCI zlot [-1: autozearch]:

K

0K I LCancel | Help | Apply |

Board — Defines the board being accessed by this driver block instance. If
multiple boards are present in the target PC, you can use the board number
(1...3) to differentiate the boards. The physical board referenced by the board
number depends on the PCI Slot parameter. If just one board is present in the
target system, select board number 1.

CAN 1 - physical bus — Defines the physical CAN bus type of CAN port 1. In
the board’s standard hardware configuration, only high-speed CAN is
supported. By extending the board with low-speed CAN piggyback modules,
you can also select low-speed CAN as the physical bus. Do not change this value
to low-speed if no module is present for the corresponding CAN port. If the
module is present (see the Softing user manual on how to install the modules),
you can select between high-speed and low-speed CAN here.

CAN Driver Blocks for the CAN-AC2-PCI with Philips SJATO00 CAN Controller

CAN 1- baud rate — Defines the most common baud rates for CAN port 1. If
special timing is necessary (baud rate), you can select the value User defined.
In this case, you use the CAN 1 - user defined baud rate parameter to provide
the four values for the timing information. The vector elements have the
following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

CAN 2 - physical bus — Defines the physical CAN bus type of CAN port 2. In
the board’s standard hardware configuration, only high-speed CAN is
supported. By extending the board with lows-peed CAN piggyback modules,
you can also select low-speed CAN as the physical bus. Do not set this value
should to low-speed if no module is present for the corresponding CAN port. If
the module is present (see the Softing user manual on how to install the
modules), you can select between high-speed and low-speed CAN here.

CAN 2 - baud rate — Defines the most common baud rates for CAN port 2. If
special timing is necessary (baud rate), the value User defined can be selected.
In this case, you can use the CAN 2 - user defined baud rate parameter to
provide the four values for the timing information. The vector elements have
the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

Initialization command structure and Termination — Defines CAN
messages sent during initialization and termination of the Setup block.

PClI slot (-1: autosearch) — Defines the PCI slot in which the referenced board
(board number) resides. If only one board is present in the target system, set
the value for this control to -1 (autosearch). This ensures that the xPC Target
kernel automatically finds the board regardless of the PCI slot it is plugged
into. If two or more boards of this type are physically present in the target PC,
enter the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. Use the xPC Target

4-25

4 N 1/O Support
PP

function getxpcpci to query the target system for installed PCI boards and the
PCI slots they are plugged into. For more information see help getxpcpci.

The board allows you to terminate each of the two CAN ports separately by
means of DIP switches at the rear panel. Refer to the Softing user manual on
how to set the DIP switches. Both CAN ports must be terminated properly
when you use the loop-back model provided to test the board and drivers.

Send Driver Block

The Send driver block transmits data to a CAN network from within a block
model.

Z)Block Parameters: Send 7=

—canac2poizend [mazk] [link)

Softing
CAM-AC2-PCI
with SJA1000

—Parameters

Board: h
CaM port: I CaM 1 LI
CAN identiier range: | Standard (11-bi |

|dentifiers:

[

Data frame sizes:

Jie1

[~ Show status output ports

Sample tirme:
joom

0K I LCancel | Help | Apply |

Board — Defines the board used to send out the CAN messages defined by this
block instance. For more information about the meaning of the board number
see the Setup driver block described above. If just one board is present in the
target system, select board number 1.

CAN port — Selects the CAN port to which the CAN message is sent.

4-26

CAN Driver Blocks for the CAN-AC2-PCI with Philips SJATO00 CAN Controller

CAN identifier range — Selects the identifier range of the CAN messages sent
by this block instance. If an application makes use of mixed standard and
extended identifier ranges, you must use at least two instances of this block,
each defining the corresponding identifier range.

Identifiers — Defines the identifiers of the CAN messages sent by this block.
It must be a row vector in which the elements define a set of either standard or
extended identifiers. Each element must be in the range between 0 and 2031
for standard identifiers or 0 and 2% -1 for extended identifiers. The number of
identifiers for each CAN port in a model per physical CAN board cannot exceed
200 (limitation of the firmware’s dynamic object mode). The number of
elements defined here also define the number of input ports of the block. The
block icon displays the selected identifier at each input port. Each input port
accepts the data frame to be sent along with the CAN message. The signal
entering each input port must be a scalar of type double representing the
maximum size of 8 bytes of a CAN message data frame.

Data frame sizes — Defines the data frame size for each identifier (CAN
message) in bytes. It must be a row vector in which the elements define a set of
data frame sizes. Each element must be in the range between 1 and 8. If the
data frame sizes for all identifiers defined in the control above must be the
same, you can provide the size as a scalar only and scalar expansion applies. If
the sizes are different for at least two identifiers (CAN messages), you must
provide one size element for each identifier defined in the Identifiers
parameter. Therefore the lengths of the two vectors must be the same.

Show status output ports — Enables status output ports for each identifier
(CAN message). If the check box is checked the block shows as many output
ports as input ports. The data type of each output port is a double and the value
is identical to the return argument of function CANPC_write object(...),
described in the Softing user manual. Refer to the manual for more
information.

Sample time — Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Send block in the model as needed. For
example, by using two instances of the block, you can send CAN messages at
different sample times. Or you can use multiple instances to structure your
model more efficiently.

4-27

4 N 1/O Support
PP

4-28

Receive Driver Block

The Receive driver block retrieves data from a CAN network to be used within
a block model. You can use as many instances of the Receive block in the model
as needed.

x
—canac2poireceive [mazk] [link)
Softing
CaM-AC2-PCI
with 5421000
—Parameters
Board -
CAM port: I CeM 1 LI
CAM identifier range: I Standard [171-bit] ;I
|dentifiers:
[0
COutput port options: I D ata ;I
[~ Generate intermupts
Sample tirme:
joom
0K LCancel | Help |

Board — Defines the board the CAN messages defined by this block instance
are retrieved from. For more information about the meaning of the board
number, see the Setup driver block described above. If just one board is present
in the target system, select board number 1.

CAN port — Selects the CAN port from which the CAN messages are retrieved.

CAN identifier range — Selects the identifier range of the CAN messages
retrieved by this block instance. If an application makes use of mixed standard
and extended identifier ranges, you must use at least two instances of this
block, each defining the corresponding identifier range.

Identifiers — Defines the identifiers of the CAN messages retrieved by this
block. It must be a row vector in which the elements define a set of either
standard or extended identifiers. Each element must be in the range between

CAN Driver Blocks for the CAN-AC2-PCI with Philips SJATO00 CAN Controller

0 and 2031 for standard identifiers or 0 and 22° - 1 for extended identifiers. The
number of identifiers for each CAN port in a model per physical CAN board
cannot exceed 200 (limitation of the firmware’s dynamic object mode). The
number of elements defined here also defines the number of output ports of the
block. The block icon displays the selected identifier at each output port. Each
output port outputs the data frame being retrieved along with the CAN
message. The signal leaving each output port is a scalar of type double
representing the maximum size of 8 bytes of a CAN message data frame.

Output port options — Defines the type of retrieved data output at each
output port. Three different types of data can be output, data frame, status,
and timestamp. The status information is of type double and is identical to the
return value of function CANPC_read rcv_data (...), described in the Softing
user manual. Refer to the manual for more information. The timestamp
information is of type double and outputs the latest time at which a CAN
message with the corresponding identifier was received. This time information
in seconds (with a resolution of 1 microsecond) can be used to implement
time-out logic within your model. The pop-up menu lets you select the output
information at each output port of the block. If you select Data, each output port
signal is a scalar only. If you select Data - Status, each output port signal is
a vector with two elements, in which the first element contains the data frame
and the second element the status information. If you select Data - Status -
Timestamp, each output port signal is a vector with three elements, in which
the first element contains the data frame, the second element the status
information, and the third element the timestamp.

Generate interrupts — Defines whether the CAN messages defined in this
instance of the block will initiate an interrupt from the CAN board each time
they are received. If selected, you can use CAN messages to control model
(target application) execution.

Sample time — Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Send block in the model as needed. For
example, by using two instances of the block, you can send CAN messages at
different sample times. Or you can use multiple instances to structure your
model more efficiently.

4-29

4 N 1/O Support
PP

CAN Driver Blocks for the CAN-AC2-104 (PC/104) with
Philips SJA1000 CAN Controller

The driver blocks described here support the CAN-AC2-104 (PC/104). The
Philips SJA1000 chip is used as the CAN controller in this configuration and
supports both standard and extended identifier ranges in parallel. The driver
block set for this board is found in the xPC Target I/O block library in the group
CAN/Softing.

E!Library: wpclib/CAN/Softing 10| =|
File Edit Wew Formab Help

B T 1 I S B e

CAN-ACEZ-I5A CAN-AGERISA CAN-AGCZ-FGI CAN-AGE-104
Philips G200 Intz1 527 SJA 1000 SJa 1000

The fourth block group, CAN-AC2-104 SJA 1000, contains the three available
CAN blocks: Setup, Send, and Receive, plus a FIFO Mode block, which is
discussed in Chapter 5, “CAN I/O Support for FIFO.”

4-30

CAN Driver Blocks for the CAN-AC2-104 (PC/104) with Philips SJATO00 CAN Controller

ZLibrary: #pclib/.../Softing,/CAN-AC 10l =l
File Edit Wiew Format Help

CAN-ACE-104 B
CAN1/CAN 2
Standamrd f Extended

Setup

SAN-AGE2-104 B
u} GAM 1 -Send E}’

Standard 11bit

Send FIFO hibde

SAN-AGE2-104 B
SAN 1 - Receive u}
Standard 11bit

Rexeie

Setup Driver Block

The Setup block defines general settings of the stacked CAN boards. The CAN
driver blocks for this board support up to three boards for each target system,
making up to six CAN ports available. For each board in the target system, you
must use exactly one Setup driver block.

4-31

4 N 1/O Support
PP

4-32

—canac2104zetup [maszk] [link)

Safting
Can-aC2-104
with 5J41000
—Parameters
Boarct: [GGEGE—— -
CaM 1 - baud rate; I 1 MBaud LI
CaM 1 - user defined baud rate:
11,431
CAN 2- baud rate: [1 MBaud |
CaM 2 - user defined baud rate;
f1.1.43]

Initialization command structure:
i

Termination:

fi

1/0 basze address:

2200

temom base address:
|0xd0000

Interrupt line: I Nare LI

OF. I LCancel | Help | Apply |

Board — Defines the board being accessed by this driver block instance. If
multiple boards are present in the target PC, you can use the board number
(1...3) to differentiate the boards. The physical board referenced by the board
number depends on the PCI Slot parameter. If just one board is present in the
target system, select board number 1. The physical board referenced by the
board number depends on the I/O base address parameter.

CAN 1 - baud rate — Defines the most common baud rates for CAN port 1. If
special timing is necessary (baud rate), you can select the value User defined.
In this case, use the CAN 1 - user defined baud rate parameter to provide the
four values for the timing information. The vector elements have the following
meanings:

CAN Driver Blocks for the CAN-AC2-104 (PC/104) with Philips SJATO00 CAN Controller

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

CAN 2 - baud rate — Defines the most common baud rates for CAN port 2. If
special timing is necessary (baud rate), you can select the value User defined.
In this case, use the CAN 2 - user defined baud rate parameter to provide the
four values for the timing information. The vector elements have the following
meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

Initialization command structure and Termination — Define CAN
messages sent during initialization and termination of the Setup block.

I/O base address — Defines the I/O base address of the board to be accessed
by this block instance. The I/O base address is given by the DIP switch setting
on the board itself. The I/O address range is 3 bytes and is mainly used to
transfer the memory base address the board should use. See the Softing user
manual for this board to set the I/O base address. The I/O base address entered
in this control must correspond with the DIP switch setting on the board. If
more than one board is present in the target system, a different I/O base
address must be entered for each board. In this case the I/O base address itself
defines which board is referenced by which board number.

Memory base address — Defines the memory base address of the board to be
accessed by this block instance. The memory base address is a software setting
only (no corresponding DIP switch is found on the board). The memory address
range is 4 KB. If more than one board is present in the target system, a
different memory base address must be entered for each board. You must make
sure that the defined address ranges do not overlap. Because the xPC Target
kernel only reserves a subset of the address range between 640 KB and 1 MB
for memory mapped devices, the address ranges must lie within the following
range:

C0000 - DCOOO

4-33

4 N 1/O Support
PP

The board allows you to terminate each of the two CAN ports separately by
means of jumpers found on the board. Refer to the board user manual for how
the DIP switches must be set. Both CAN ports must be terminated properly
when you use the loop-back model provided to test the board and drivers.

Interrupt line — Selects an interrupt line from the list.

Send Driver Block

The Send driver block transmits data to a CAN network from within a block
model. You can define up to 200 send objects for standard and extended
identifiers for each CAN channel.

Z)Block Parameters: Send 7=

—canacg]0dzend [maszk) [link)]

Softing
CAM-AC2-104
with SJA1000

—Parameters

Board -
CAM port: I CeM 1 LI
CAM identifier range: | Standard [11-bit) LI
|dentifiers:

[0

Data frame sizes:

fi2]

[Show status output ports

Sample tirme:
joom

0K I LCancel | Help | Apply |

Board — Defines the board to use to send the CAN messages defined by this
block instance. For more information about the meaning of the board number,
see the Setup driver block described above. If just one board is present in the
target system, select board number 1.

CAN Port — Selects the CAN port to send the CAN message.

4-34

CAN Driver Blocks for the CAN-AC2-104 (PC/104) with Philips SJATO00 CAN Controller

CAN identifier range — Selects the identifier range of the CAN messages sent
by this block instance. If an application makes use of mixed standard and
extended identifier ranges, you must use at least two instances of this block,
each defining the corresponding identifier range.

Identifiers — Defines the identifiers of the CAN messages sent by this block.
It must be a row vector in which the elements define a set of either standard or
extended identifiers. Each element must be in the range between 0 and 2031
for standard identifiers or 0 and 22? - 1 for extended identifiers. The number of
identifiers for each CAN port in a model per physical CAN board cannot exceed
200. The number of elements defined also defines the number of input ports of
the block. The block icon displays the selected identifier at each input port.
Each input port accepts the data frame to be sent along with the CAN message.
The signal entering each input port must be a scalar of type double
representing the maximum size of 8 bytes of a CAN message data frame.

Data frame sizes — Defines the data frame size for each identifier (CAN
message) in bytes. It must be a row vector in which the elements define a set of
data frame sizes. Each element must be in the range between 1 and 8. If the
data frame sizes for all identifiers defined in the preceding control must be the
same, you can provide the size as a scalar only and scalar expansion applies. If
the sizes are different for at least two identifiers (CAN messages), one size
element must be provided for each identifier specified in the Identifiers
control. Therefore the lengths of the two vectors must be the same.

Show status output ports — Enables status output ports for each identifier
(CAN message). If the check box is selected, the block shows as many output
ports as input ports. The data type of each output port is a double and the value
is identical to the return argument of function CANPC_write object(...),
described in the Softing user manual. Refer to the manual for more
information.

Sample time — Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Send block in the model as needed. For
example, by using two instances of the block, you can define different sample
times at which CAN messages are sent out. Or you can use multiple instances
to structure your model more efficiently.

4-35

4 N 1/O Support
PP

4-36

Receive Driver Block

The Receive driver block retrieves data from a CAN network to be used within
a block model. You can use as many instances of the Receive block in the model
as needed.

E Block Parameters: Receive x|

—canace]0dreceive [maszk)] (link]

Softing
CAM-AC2-104
with SJA1000

—Parameters

Board -

CAM port: I CeM 1

=
=

CAM identifier range: I Standard [11-bit)

|dentifiers:
[0
COutput port options: I D ata LI

[~ Generate intermupts

Sample tirme:
joom

Ok LCancel | Help |

Board — Defines the board from which the CAN messages defined by this
block instance are to be retrieved. For more information about the meaning of
the board number, see the Setup driver block. If just one board is present in the
target system, select board number 1.

CAN Port — Selects the CAN port from which to retrieve the CAN message.

CAN identifier range — Selects the identifier range of the CAN messages
retrieved by this block instance. If an application makes use of mixed standard
and extended identifier ranges, at least two instances of this block must be
used, each defining the corresponding identifier range.

Identifiers — Specifies the identifiers of the CAN messages retrieved by this
block. It must be a row vector where the elements define a set of either
standard or extended identifiers. Each element must be in the range between

CAN Driver Blocks for the CAN-AC2-104 (PC/104) with Philips SJATO00 CAN Controller

0 and 2031 for standard identifiers, or 0 and 229 _ 1 for extended identifiers.
The number of identifiers for each CAN port in a model per physical CAN board
cannot exceed 200. The number of elements defined here defines the number of
output ports of the block. The block icon displays the selected identifier at each
output port. Each output port outputs the data frame being retrieved along
with the CAN message. The signal leaving each output port is a scalar of type
double representing the maximum size of 8 bytes of a CAN message data
frame.

Output port options — Defines the type of retrieved data output at each
output port. Three different types of data can be output: data frame, status,
and timestamp. The status information is of type double and is identical to the
return value of function CANPC_read rcv_data(...), described in the Softing
user manual. Refer to the manual for more information. The timestamp
information is of type double and outputs the most recent time at which a CAN
message with the corresponding identifier was received. This time information
in seconds (with a resolution of 1 microsecond) can be used to implement
time-out logic within your model.

The pop-up menu lets you select the output information output at each output
port of the block. If you select Data, each output port signal is a scalar only. If
you select Data-Status, each output port signal is a vector with two elements,
in which the first element contains the data frame and the second element the
status information. If you select Data-Status-Timestamp, each output port
signal is a vector with three elements, in which the first element contains the
data frame, the second element the status information, and the third element
the timestamp.

Generate interrupts — Defines whether the CAN messages defined in this
instance of the block initiate an interrupt from the CAN board each time they
are received. If selected, you can use CAN messages to control model (target
application) execution.

Sample time — Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Receive block in the model as needed. For
example, by using two instances of the block, you can define different sample
times at which CAN messages are retrieved. Or you can use multiple instances
to structure your model more efficiently. You can define up to 200 receive
objects for standard and extended identifiers for each CAN channel.

4-37

4 N 1/O Support
PP

Constructing and Extracting CAN Data Frames

CAN data frames have a maximum size of 8 bytes (64 bits). For the CAN driver
blocks found in the xPC Target I/O block library, Simulink signals of data type
double are used to propagate data frames as an entity. But in most applications
the data frame content does not consist of 64-bit floating point values; instead
they are constructed from one or more smaller data type entities such as signed
and unsigned integers of various size.

To simplify the construction and extraction of data frames for the user, the xPC
Target I/O library contains two utility blocks (found in subgroup CAN/Utilities)
that allow bit-packing (construction) and bit-unpacking (extraction) of data
frames in a very flexible way.

[Z]Library: xpclib/CAN Utilitie -|O] x|

File Edit Wew Formab Help

0:15 0:15
[[
GSAN bit-packing GSAN bit-unpacking
Tireout=1
&l

CARN Tirmeout Detzction

The main purpose of the two blocks is to be used in conjunction with CAN Send
and Receive driver blocks, but they can be used as well for other types of data
manipulation. Their functionality is entirely independent of any CAN driver
blocks or CAN library.

4-38

Constructing and Extracting CAN Data Frames

CAN Bit-Packing Block

This block constructs CAN data frames, and its output port is normally
connected to an input port of a CAN Send driver block. The block has one
output port of data type double (a scalar), which represents the data frame
entity constructed by the signals entering the block at its input ports. The
number of input ports and the data type of each input port depend on the
setting in the block’s dialog box.

[1Block Parameters: CAN bit-packing 21x|

—hit2double [mazk] (link]
CaM
tilities
Bit-Packing

—Parameters

Ok Cancel | Help | Apply |

The dialog box contains the Bit Patterns parameter, which lets you define the
bit patterns in a flexible way. The data type entered in the control must be a
MATLAB cell array vector. The number of elements in the cell array define the
number of input ports shown by this block instance. The cell array elements
must be of type double array and define the position of each bit of the incoming
value (data typed input port) in the outgoing double value (data frame).

From a data type perspective (input ports), the block behaves like a Simulink
Sink block, and therefore the data types of the input ports are inherited from
the driving blocks.

The sample time of the block is also inherited from the driving blocks.
Therefore no explicit sample time must be provided in the block’s dialog box.

The functionality of the block is best explained by means of an example.

4-39

4 N 1/O Support
PP

4-40

Assume that a node on the CAN network needs to receive a CAN message with
identifier 156 having the following data frame content. The data frame must be
6 bytes long.

Byte 0 Function class of type uint8

Byte 1 Function subclass of type uint8 with reversed
bit order

Byte 2 Reserved, all bits must be 1

Byte 3 Bit 0 must be 0, Bit 1 must be a boolean (flag),

bits 2 to 7 must be bit 2 to 7 of an incoming int8
value (control)

Byte 4 and 5 Value of type int16

The bit pattern cell array, which bit-packs the data frame according to the
above specification, can look as follows:

{ [0:7] , [15:-1:8] , [16:23] , [25] , [-1,-1,26:31] , [32:47] }

And the Simulink model simulating the needed behavior would be as shown.

Constructing and Extracting CAN Data Frames

Sbitpackdemo =10l x|

File Edit Wiew Simulation Format Toaols Help

uirms

uinta(112)
GAN-AGEZ-PGI B

Function Slass CAN T SCAR 2
Standamrd f Extended

uirtS Setup
o:r

uintg 23]

Y

Function subclass

¥

15:-1:8

ey O AL 16:23 GAN-AC2-PGI B1
w0 SAN 1 - Send

g
&
o
F

B
Fese ried W 25 Standard 11bit
B 11,2631 Send
bookan(ly |[CodeEn -
Fleg CARN bit-packing
it

Sontmol

int18(-12270)

Contmi

Analyze the model.

The first input is the function class of type uint8, which has an example value
of 112. This value becomes byte 0 (bits O to 7) of the data frame. Therefore the
first bit (element 1 of double array [0:7]) gets bit O of the data frame, the second
bit 1, and so on. It is easiest to define this mapping by the MATLAB colon
operator (:).

The second input is the function subclass of type uint8, which has an example
value of 23. This value becomes byte 1 (bits 8:15) of the data frame but in
reversed bit order. Therefore the first bit (element 1 of double array [15:-1:8])
gets bit 15, the second bit 14, and so on. It is easiest to define this mapping by
the MATLAB colon operator (:) and an increment of -1.

The third input is only necessary because the reserved byte 2 must have all bits
set to 1. If a bit position in the outgoing data frame is not referenced by a bit
pattern array element, the bit is 0 by default, but there is no way to set them

4-41

4 N 1/O Support
PP

to 1 as the default. Therefore a uint8 constant with value 255 must be brought
in externally. The constant 255 must get to bit position 16 to 23 (byte 2) of the
outgoing data frame.

Because bit 0 of data frame byte 3 (bit 24) must be 0, and 0 is the default bit
value if not referenced by a bit pattern array element, no explicit action is
taken here.

The fourth input is the flag of type Boolean, which has an example value of 1.
This value must become bit 1 of byte 3 (bit 25) of the data frame. Therefore the
single bit (element 1 of double array [25]) must get bit 25 of the data frame.

The fifth input is the control of type int8, which has an example value of 121.
But only bits 2 to 7 must be mapped into the outgoing data frame or, in other
words, bits 0 and 1 must be thrown away. Because indexing of incoming values
always starts with the first bit (bit 0), a special indexing value (-1) must be used
to skip bit 0 and 1 of the incoming int8 value. Bits 2 to 7 are directly mapped
to bits 2 to 7 of byte 3 (bits 26 to 31) of the outgoing data frame. This leads to
the following bit pattern: [-1,-1,26:31].

The sixth input is the value of type int16, which has an example value of
-12270. This value must become byte 4 and 5 (bits 32 to 47) of the outgoing data
frame. Therefore the first bit (element 1 of double array [32:47]) must get bit
32 of the data frame, the second bit 33, and so on. It is easiest to define this
mapping by the MATLAB colon operator (:).

The output of the block then consists of a double value representing the packed
data types within the first six bytes. The last two bytes are zero. This means
that even in the case where less than eight bytes are significant, the CAN data
frame is always represented by a double value (eight bytes). The value of the
constructed floating-point double does not have any particular meaning but
you still see it with a numerical display.

4-42

Constructing and Extracting CAN Data Frames

[Z1Block Parameters: Send 21x|

—canac2l04zend [maszk] (link)

Safting
CaM-aC2-104
with SJA1000

—Parameters

Board: I 1

CAM port; I CAaN 1

Lol Lef Lo

CAM identifier range: I Standard [11-hit]
|dentifiers:

J[158]

Data frame sizes:

Ji6]

[Show status output parts

Sample tirme:
joom

Ok I Cancel | Help | Apply |

The data frame is then propagated to the CAN Send driver block and is sent as
part of a CAN message having identifier 156. In the Send block’s dialog box, the
data frame size is defined as 6 bytes. This ensures that only the first six bytes
of the incoming double value are transmitted as part of the CAN message.

CAN Bit-Unpacking Block

This block is used to extract CAN data frames, and its input port is normally
connected to an output port of a CAN Receive driver block. The block has one
input port of data type double (a scalar), which represents the data frame
entity from which the signals are extracted and leaving the block at its output
ports. The number of output ports and the data type of each output port depend
on the settings in the block’s dialog box.

4-43

4 N 1/O Support
PP

4-44

[Z1Block Parameters: CAN bit-unpacking d |

—double2bit [maszk] (link]
CaM
tilities
Bit-Unpacking

—Parameters

Bit patterns [cell array]:

Drata types [cell aray):
J{ uint1Ey

OF. I LCancel | Help | Apply |

The dialog box contains two controls (edit fields).

The dialog box contains the Bit Patterns parameter, which lets you define the
bit patterns in a flexible way. The data type entered in the control must be a
MATLAB cell array vector. The number of elements in the cell array define the
number of input ports shown by this block instance. The cell array elements
must be of type double array and define the position of each bit of the incoming
value (data typed output port) in the incoming double value (data frame).

From a data type perspective (output ports), the block behaves like a Simulink
Source block, and therefore the data types of the output ports must be defined
in the second control (edit field). The data type entered in that control must be
a MATLAB cell array vector of the same length as the bit pattern cell array.
The cell array elements must be of type char and define the data type of the
corresponding output port. The following values are supported:

boolean, int8, uint8, int16, uint16, int32, uint32

The sample time of the block is inherited from the driving block. Therefore no
explicit sample time need be provided in the block’s dialog box.

Note that if you unpack the data frame into a signed type (int8, int 16, or int
32), the block performs sign extension as necessary. For example, if the bit
pattern is [0:4], and the data type is int8, you are extracting 5 bits into an 8
bit wide signed type. In this case, bits 5, 6, and 7 are the same as bit 4, resulting
in the proper sign extension. This functionality enables you to pack and unpack

Constructing and Extracting CAN Data Frames

negative numbers without losing accuracy. In the preceding example, you can
pack and unpack numbers in the range [-16 : 15] (a fictitious int5 type).

The functionality of the block is easiest explained by means of an example. The
same example as used above demonstrates the functionality of the bit-packing
block. But in this case, the data frame is sent by an external CAN node and is
received by the target application running on an xPC Target system. Therefore
the bit-unpacking block is used to extract the various data fields from the
entire data frame. Because the bit pattern definitions of the packing and
unpacking block are symmetric, the bit pattern definition could look exactly the
same. There is one simple optimization possible: You do not need to extract
byte 2 (reserved area), because its content is known. The bit pattern edit field
can therefore look as follows:

{[0:7] , [15:-1:8] , [25] , [-1,-1,26:31] , [32:47] }

and the data type edit field as

{ 'uint8' , 'uint8' , 'boolean' , 'int8' , 'int16' }

Sbitunpackdemo =10l x|

File Edit Wiew Simulation Format Toaols Help

CAN-AGE-PCI B
CAN1/CAN 2
Standamrd f Extended

Setup

RN E—
o7
Function class
TN —
CAN-ACZ-FGI E1 15:-1:8
R double
GAM 1 - Receive 2} Funetion subclass
Standamd 11bit kol
=an
25 w0
Receine =
Flag
1,1,26:m1 S p[0
Contml
3247 -l”'ms |—p I
Walue

GAN bit-unpacking

4-45

4 N 1/O Support
PP

This leads to the following Simulink model.

In many cases it makes sense to test the proper bit-packing and bit-unpacking
operations in a Simulink model (simulation) before building the target
application. Both blocks work the same way either in Simulink or the
generated code. By combining the two models shown so far, a third model
emerges that can be used to simulate the behavior.

Elbitpackunpackdemo 10l =|
File Edit WYiew Simulation Format Tools Help
uintg(112)
1.13=300
Function Glass
Data frame
s 112
o7 07
Function subclass) "
1518 Function class
i uirts
uintB(255) it 16:23 dotle 15:-1:8
Function subclass1
Reszred 25
> boclesn
bodean A,41,26:31 » 28
bockan(l) 2347) Flagi
. irts 120
1,-1,26:31
Flag SAN bit-packing
i Contm
intS(121) ontm
47 LIS 12270
Gontml 3247 —l -
. Value
int16({-12270) GAN bit-unpacking
Contml

4-46

Detecting Time-Outs When Receiving CAN Messages

Detecting Time-Outs When Receiving CAN Messages

The Receive driver blocks for all CAN boards allow you to output the
timestamp at which the latest corresponding CAN message was received. This
information can be used to detect whether another CAN node is still active and
therefore is sending CAN messages or is no longer active and special action
must be taken. Assume that a CAN message is expected from another CAN
node every 2 milliseconds. If no new message is received within 10
milliseconds, the other CAN node is considered faulty, and the Simulink model
(target application) must proceed accordingly.

The CAN blockset in the xPC Target I/O block library provides a utility block
called CAN Timeout Detection. This is a simple graphical subsystem (inspect
it by looking under its mask) that uses the timestamp information to calculate
the time-out condition.

A Simulink model using this block in conjunction with a Receive block could
look as follows:

=i

File Edit Wiew Simulation Format Tools Help

CAN-ACE-FGI BT
CAN 1/ GAN2
Standard f Extended

Setup

Terminator
[mte frme
CAN-ACE-PC] B
GAN 1 - Receie 156
Standard 11bit Timest Timeout = 0.01 p[0]
Receive, Ts=0.002 Timeout

SAN Tireout Detection

4-47

4 N 1/O Support
PP

4-48

CAN Timeout Detection Block

The CAN Timeout Detection block uses the timestamp information to calculate
the time-out condition. For examples of this block usage, see

® “Detecting Time-Outs When Receiving CAN Messages” on page 4-47 —
Detecting time-outs example

® xpccanpci — Loop-back example for the CAN-AC2-PCI board
® xpccanpc104 — Loop-back example for the CAN-AC2-104 board

[Z]Block Parameters: CAN Timeout Detection d |
—pccantimeout [mazk) [link]
CaM
tilities
Timeout Detection

—Parameters

Timeaut [s]:

Ji

0K LCancel | Help | Apply |

The dialog box of the CAN Timeout Detection block has one edit field.

Timeout — Specify the time-out value, in seconds. The output of the block is:

® 0, if no time-out has been detected

e 1 if a time-out has been detected

Model Execution Driven by CAN Messages (Interrupt Capability of CAN Receive Blocks)

Model Execution Driven by CAN Messages (Interrupt
Capability of CAN Receive Blocks)

In certain applications, the model (target application) execution is driven by
the pace of an incoming CAN message. The standard behavior of the xPC
Target kernel is to drive the model (target application) in time monotonic
fashion (time interrupt). However, the driving interrupt can be replaced by any
other hardware interrupt. Because the three supported CAN boards permit the
firing of a hardware interrupt upon reception of a specific CAN message, you
can replace the timer interrupt line in the kernel by the interrupt line assigned
to a CAN board. This leads to a CAN-message-driven execution of the target
application.

To set this up, two independent steps are necessary:

1 Replace the timer interrupt line in the kernel setup with the board’s
hardware interrupt line.

2 Properly set up the CAN Setup and CAN Receive blocks.

Both steps are slightly different for each of the three supported CAN boards.
Therefore the two steps are explained for each board type below.

CAN-AC2 (ISA)

The CAN-AC2is an ISA board, and the hardware interrupt line is set by means
of hardware jumpers on the board. Refer to the Softing user manual for the
board on how to set a certain interrupt line. Select an interrupt line that is not
used by any other hardware device in the xPC Target system (for example by
the Ethernet card).

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Options.

The Configuration Parameters dialog box is displayed.
2 Click the Real-Time Workshop node.

3 Ensure that in the Target selection section, the RTW system target file
field is set to xpctarget.tlc.

4-49

4 N 1/O Support
PP

4 Select the xPC Target options node.

5 In the Real-time interrupt source field, select the interrupt line number
that you have set using the jumpers on the board.

6 Click OK and save the model.

7 Open the dialog box of the CAN Receive block in the model that defines the
CAN message (identifier) to be used to fire the interrupt. Select the
Generate interrupts check box. Selecting this box declares all CAN
messages defined in this Receive block instance through their identifiers as
messages that fire an interrupt. In other words, it is not possible to define a
single CAN message within the set of defined identifiers to be the only one
to fire an interrupt. In most cases only the reception of one specific message
is used to drive the application execution. Therefore use at least two
instances of the Receive block. One to receive the CAN message that drives
the execution (Generate Interrupts selected) and the other for all other
normal CAN messages to be received (Generate Interrupts cleared).

CAN-AC2-PCI

The CAN-AC2is a PCI board, and the hardware interrupt line is automatically
assigned by the PCI BIOS during the initialization of the target system. Use
the xPC Target function getxpcpci (see help getxpcpci) at the MATLAB
command prompt to query the target system for installed PCI devices and the

assigned resources. Write down the interrupt line number assigned to the
CAN-AC2-PCI board.

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Options.

The Configuration Parameters dialog box is displayed.
2 Click the Real-Time Workshop node.

3 Ensure that in the Target selection section, the RTW system target file
field is set to xpctarget.tlc.

4 Select the xPC Target options node.

4-50

Model Execution Driven by CAN Messages (Interrupt Capability of CAN Receive Blocks)

5 In the Real-time interrupt source field, select the interrupt line number
that you retrieved with the getxpcpci command.

6 Click OK and save the model.

7 Open the dialog box of the CAN Receive block in the model that defines the
CAN message (identifier) to be used to fire the interrupt. Select the
Generate interrupts check box. Selecting this box declares all CAN
messages defined in this Receive block instance through their identifiers as
messages that fire an interrupt. In other words, it is not possible to define a
single CAN message within the set of defined identifiers to be the only one
to fire an interrupt. In most cases only the reception of one specific message
is used to drive the application execution. Therefore use at least two
instances of the Receive block. One to receive the CAN message that drives
the execution (Generate Interrupts selected) and the other for all other
normal CAN messages to be received (Generate Interrupts cleared).

CAN-AC2-104 (PC/104)

The CAN-AC2-104 is an ISA board (PC/104), and the hardware interrupt line
is set by means of a software setting within the CAN Setup driver block. Note
a free interrupt line that is not used by any other hardware device in the xPC
target system (for example by the Ethernet card).

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Options.

The Configuration Parameters dialog box is displayed.
2 Click the Real-Time Workshop node.

3 Ensure that in the Target selection section, the RTW system target file
field is set to xpctarget.tlc.

4 Select the xPC Target options node.

5 In the Real-time interrupt source field, select the free interrupt line
number that you chose.

6 Click OK and save the model.

4-51

4 N 1/O Support
PP

7 In the model open the dialog box of the CAN Setup block for the
CAN-AC2-104 board. Select the chosen interrupt line in the Interrupt Line
pop-up menu and close the dialog box. Open the dialog box of the CAN
Receive block in the model that defines the CAN message (identifier) to be
used to fire the interrupt. Select the Generate interrupts check box.
Selecting this box declares all CAN messages defined in this Receive block
instance through their identifiers as messages that fire an interrupt. In
other words, it is not possible to define a single CAN message within the set
of defined identifiers to be the only one to fire an interrupt. In most cases
only the reception of one specific message is used to drive the application
execution. Therefore use at least two instances of the Receive block. One to
receive the CAN message that drives the execution (Generate Interrupts
selected) and the other for all other normal CAN messages to be received
(Generate Interrupts cleared).

After you complete these two steps, you are ready to build the model. After the
downloading has succeeded and the target application execution has been
started, the execution is now driven by the selected CAN messages. The
execution time information displayed on the target screen is now directly
dependent on the reception of the corresponding message. If no message is
received the time does not advance. You should ensure that the corresponding
CAN message on the other CAN node is only generated if the xPC target
application is running, otherwise unexpected interrupt messages might be
displayed on the target screen.

4-52

Defining Initialization and Termination CAN Messages

Defining Initialization and Termination CAN Messages

The CAN Setup driver blocks for all supported CAN boards allow the definition
of CAN messages to be sent during initialization and termination of the target
application (once at the beginning of each application run and once before an
application run is stopped). The main purpose for sending these messages is to
initialize or terminate other CAN nodes on the network. This is the case, for
example, for CANOpen or DeviceNet nodes. Even if xPC Target does not
provide direct support of those CAN application layers, communication with
those nodes can usually be done over standard CAN messages as long as the
nodes have been properly initialized. The initialization and termination fields
of the Setup blocks are intended for this purpose.

You define the initialization and termination CAN messages using MATLAB
struct arrays with CAN specific field names. This is the same concept as used
for the RS-232, GPIB, and general Counter driver blocks found in the xPC
Target I/0 library. Refer to those driver blocks and their help for additional
information about this basic concept.

The CAN Setup block-specific field names are the following:

Port — Selects the CAN port over which the message is sent. Valid values are
either 1 or 2 (double).

Type — Defines whether the message to be sent is of type standard or
extended. Valid values are either 'Standard' or 'Extended' (strings).

Identifier — Defines the identifier of the message. The value (scalar) itself
must be in the corresponding identifier range (standard or extended).

Data — Defines the data frame to be sent out along with the CAN message. The
value must be a row vector of type double with a maximum length of 8. Each
element of the vector defines one byte, where the first element defines the data
for byte 0 and the eighth element the data for byte 7. Each element can have a
value between 0 and 255 (decimal). The data frame size is defined by the length
of the row vector.

Pause — Defines the amount of time in seconds the Setup block waits after this
message has been sent and before the next message defined in the struct array
is parsed and sent. Valid values are between 0 and 0.05 seconds. Some CAN
nodes need some time to settle before they can accept the next message,
especially when the message just received puts the node in a new operational
mode. Use this field to define those necessary idle times.

4-53

4 N 1/O Support
PP

Example

Consider an A/D converter module with a CANOpen interface. After the node
is powered up, the module is in preoperational mode, which is common for
CANOpen nodes. At least two initialization messages must be sent to the node
to make the module fully operational.

The first message puts the node from preoperational into operational mode.
The second message programs the module so that each time the converted A/D
value differs by more than 10 mV from the former conversion, a CAN message
is automatically sent, with the converted value as the data frame.

After the target application starts and the node is properly initialized, the node
automatically sends a CAN message, which the xPC target application receives
and then processes.

Before the target application execution is actually stopped, the module (node)
must be returned to preoperational mode. You do this by sending out one
corresponding termination message.

The initialization and termination message struct for this example could look
as follows:

% put node into operational mode

init(1).port=1;

init(1).type='Standard’;

init(1).identifier=1536+11;

init(1).data=[hex2dec('22"'),hex2dec('23"'),hex2dec('64"'),hex2dec(
'00"),hex2dec('01")1;

init(1).pause=0.02;

% program node to send CAN messages with converted A/D values
automatically
init(2).port=1;

init(2).type='Standard’;
init(2).identifier=0;
init(2).data=[hex2dec('01'),11];
init(2).pause=0;

% put node back into preoperational mode
term(1).port=1;
term(1).type='Standard"';

4-54

CAN-AC2 and CANopen Devices

CAN-AC2 and CANopen Devices

xPC Target CAN-AC2 supports CAN specification 2.0a and 2.0b but this does
not generally include the CANopen protocol on driver level. Nevertheless it is
possible to access CANopen devices by the CAN-AC2 drivers in a general way.

CANopen knows two types of messages i.e. SDO and PDO. SDOs are used to
setup or initialize a CANopen device for a certain behavior. PDOs are messages
that contain real-time data (i.e. converted A/D values from a analog input
device) and are CAN-type messages with no CANopen object, index, and
subindex information.

xPC Target applications that have to access CANopen devices over the
CAN-AC2 drivers transmit SDOs during the initialization phase and the
termination phase of the driver. PDOs are sent or received during the
simulation phase of the driver.

Because SDOs and PDOs are regular CAN-messages the CAN-AC2 drivers
have to provide a way to transmit SDOs during the initialization and
termination phase of the CAN-AC2 set up driver block to initialize the different
CANopen devices in the network. This is done by providing a c-file within your
project directory that describes the SDO messages to send to setup and
terminate the CANopen device. During the compilation stage of the xPC Target
application (build-process) this c-file, which has to have the filename
CANAC2_setup.c, is then included into the setup driver.

This implementation has the advantage of accessing a specific CANopen device
without the need to have special driver blocks for this device. It is, therefore, a
general implementation but has the disadvantage that the user must be able
to provide the information (messages) to properly set up and terminate the
communication with a specific CANopen device. This information is provided
either by the CANopen device manufacturer or by the CAN-CIA association
(www.can-cia.de).

For an explanation of how to write the CANAC2_setup.c file for a specific
CANopen device, see the example below. In this example an analog input
device from Selectron (www.selectron.ch)with the name AIC711 is used to get
the A/D-converted values over the CAN-network into the xPC Target
application.

4-55

4 N 1/O Support
PP

Note CANopen initialization and termination is only supported if the
CAN-AC2 board is equipped with the Philips C200 controller for standard
identifiers.

Example: Accessing the AIC711 CANopen Device from Selectron

The AIC711 contains four analog input channels with a resolution of 12bits and
a minimal update-time (sample time) of 10ms.

As explained in earlier chapters, the CAN-AC2 drivers use the dynamic object
model to reach low latency times. Therefore the A/D values from the AIC711
have to be received in such a way that they are compatible to the object model
of the driver.

The AIC711 has to be seen as a CANopen server and the xPC Target CAN-AC2
drivers (the xPC Target application) as a CANopen client. The AIC711 offers
two ways of getting the converted A/D-values over the network:

® Synchronous
® Asynchronous

In the synchronous mode, the client transmits a remote frame to the server to
invoke an A/D-conversion of a specified channel. It then waits (poll) until the
converted value is received by an ordinary CAN data-message which will
contain the values. Synchronous mode leads to large latency times up to 20ms
(Tsmin=10ms). During this time period, the xPC Target gets stuck and this is
inacceptable.

In addition, the synchronous mode does not fit into the dynamic object model
implementation of the xPC Target CAN-drivers because remote frames have to
be transmitted.

In the asynchronous mode, the AIC711 sends PDOs automatically in a regular
manner to the client. A change in an analog input value invokes automatically
an A/D-conversion. After conversion, a PDO-message is constructed and sent
automatically to the client. This mode fits well into the object model of the
drivers. Therefore the CANopen devices should always be used in
asynchronous mode if used with xPC Target.

4-56

CAN-AC2 and CANopen Devices

Regarding the information in the AIC711 CANopen manual (provided by
Selectron), the following initialization messages (SDOs) and termination
messages (SDOs) must be invoked:

¢ Initialization phase — Enable global interrupts to enable asynchronous
mode (object 6423). Put device from preoperational mode into operational
mode (transmission of PDOs starts).

¢ Simulation phase — CAN-AC2 Receive block outputs the latest received
A/D values.

® Termination phase — Put device from operational mode into
preoperational mode (transmission of PDOs stops)

The node id of the AIC711 device is set over DIP-switches and, in this example,
it is assumed that the node id is set to 11 (decimal). The device is connected to
CAN-port 1 of the CAN-AC2-board.

Then the CANAC2_setup.c file could look as follows

LEELEEETEEET i i rr g
// Number of initialization and termination messages
LEEEEEEEEEET IR rr g
#define CANAC2_init_number2

#define CANAC2_term_numberi

/ /#define DEBUG_CANAC2

// do not change the following four lines
#define CANAC2_setup_present

CANAC2_type CANAC2_init[CANAC2_init_number+1];
CANAC2_type CANAC2_term[CANAC2_term_number+1];
int CANAC2_counter;

/1!

[HEEEEEEEEEE i rrirrrrrd
// Identifier and constant section
[HEEEEEEEEEE i rrirrrrry

#define AIC711_node_111
#define AIC711_sdo_base1536
#define MAS_boot 0

4-57

4 N 1/O Support
PP

LT

LECELEEEEEET i i rrr i i nirrd

// Initialization section
LLELTTTLIL i rririrririrsr

// AIC711 SDO object 6423: enable global interupts

CANAC2_init[O0]
CANAC2_init[O0]
CANAC2_init[O0]
CANAC2_init[O0]
CANAC2_init[O0]
CANAC2_init[O0]
CANAC2_init[O0]
CANAC2_init[O0]
CANAC2_init[O0]

.port=1;
.identifier=AIC711_sdo_base+AIC711_node_1;
.data[0]=0x22;

.data[1]=0x23;

.data[2]=0x64;

.data[3]=0x00;

.data[4]=0x01;

.no_bytes=5;

.wait_ms=20;

// put AIC711_node_1 from pre-operational into operational state

CANAC2_init[1].
CANAC2_init[1].
CANAC2_init[1].
CANAC2_init[1].
CANAC2_init[1].
CANAC2_init[1].

port=1;
identifier=MAS_boot;
data[0]=0x01;
data[1]=AIC711_node_1;
no_bytes=2;
wait_ms=20;

LECELEEELEPT bbb b r i rr i n i r i iy

// Termination

section

LECELEEEEEETE bbb i i i i i n i r i riri iy

// put AIC711_node_1 from operational into pre-operational state

CANAC2_term[O].
CANAC2_term[O].
CANAC2_term[O].
CANAC2_term[O].
CANAC2_term[O].
CANAC2_term[O].

port=1;
identifier=MAS_boot;
data[0]=0x80;
data[1]=AIC711_node_1;
no_bytes=2;
wait_ms=20;

As soon as this file is placed into your project directory and the xPC Target
application is rebuilt, the messages defined above will be sent during
initialization and termination phase of the Setup block.

4-58

CAN-AC2 and CANopen Devices

The Simulink model could look as follows

-0l

File Edit Wiew Simulation Format Tools Help

CAN-ACE-IS5A
CAN 1/ GAN2
Standamrd

Setup

hE
Ll

Teminator

CAN-ACEASA
CAN 1 - Receive O P s=lmasaicT 11
Standard 11bit

AICT 1l comersion

Receive

Temninators

The Receive block will read continuously the object to which the AIC711 sends
the PDOs (i.e. the converted A/D-values).

Because the output of this block contains the 8 bytes of the received CAN-data
as a double value, a conversion block (AIC711conversion) is necessary to split
the 8 bytes (double) into 4 doubles (output signals) that represent the A/D value
in volts for each of the four analog input channels. The conversion is made
according to the data representation of object 6401. You use the CAN
bit-unpacking block from the CAN Ultilities library. For example, in the CAN
bit-unpacking block, set the Data types parameter to four vectors of int16 data

types:
{'it16' 'int16' 'int16' 'int16'}
In the same block, set the Bit patterns parameter to

{[0:15] [16:31] [32:47] [48:63]}

You then need to multiply the output by the voltage range, which you should
already know. Note that you may need to convert the output to type double
first.

4-59

4 N 1/O Support
PP

The third channel is then stored with an outport block, which can be visualized
by the xPC Target scope functionality.

Because CAN-messages with id 0 (boot) and 1536+node_id (SDO) have to be
sent and CAN-messages with id 640+node_id (PDO) have to be received over
CAN-port 1, the dialog box of the Setup block must look as follows:

Block Parameters: CANAC2 setup [x|
— canacZzetups [mazk) [link)
Softing
CAaMN-AC2
with Philips PCa 82C200
— Parameters
Base Address: |2 (16K]: D4000-D7FFF =]
C4N 1 - Baudrate |1 MBaud =
CAM 1 - user defined Baudrate [presc, spw, tzegl, tzeg2]:
Ji.1.4.3]
C4N 2 - Baudrate: |1 MBaud =
CAM 2 - uzer defined Baudrate [presc, spw, tzegl, tzeg2]:
Ji.1.4.3]
CAMN 1 - [dentifiers of objects to zend [max, 200
|ID.1538+11]

CAM 1 - Identifiers of objects to receive [max. 200]:
|[E40+11]

CAMN 2 - |dentifiers of objects to zend [max, 200
i

ID'B.N 2 - ldentifiers of objects to receive [max. 200
0

Aol | Fevert: | Help | Close |

The Receive block receives the data (PDO) over CAN-message 640+node-i and
must look as follows:

4-60

CAN-AC2 and CANopen Devices

C1Block Parameters: Receive

—canacizareceive [mask] [link]
Softing
CAN-AC2-154
with Philips PC& 82C200

=
F

CaM port: I CAM 1 LI
Identifiers:
JiBa0+11]

Output port options: I Data LI
™ Generate interupts

Sample time:
Joom

Ok I Lancel | Help

If more than one CANopen device is connected to the network, the dialog boxes
of the Setup and Receive blocks and the CANAC2_setup.c file have to be
extended accordingly. If you need for-loops in the CANAC2_setup.c, use the

variable CANAC2_counter.

If an analog output device (or digital output device) is connected to the
network, you must drag an additional Send block into the model to send the

PDOs to the newly connected CANopen server.

4-61

4 N 1/O Support
PP

4-62

CAN I/O Support for FIFO

This chapter includes the following sections:

Introduction (p. 5-2)

CAN FIFO Driver Blocks for the
CAN-AC2-PCI with Philips SJA1000
CAN Controller (p. 5-6)

CAN FIFO Driver Blocks for the
CAN-AC2-104 with Philips SJA1000
CAN Controller (p. 5-22)

Acceptance Filters (p. 5-38)

Examples (p. 5-40)

This chapter describes the alternative First In First Out
(FIFO) CAN drivers provided with xPC Target.

The driver blocks described here support the
CAN-AC2-PCI using FIFO mode.

The driver blocks described here support the
CAN-AC2-104 (PC/104) using FIFO mode.

The CAN controller’s acceptance filters can be used to
ensure that certain received messages referenced by their
identifiers get written into the receive FIFO.

Examples involving FIFO CAN drivers.

5 cANI1/0 Support for FIFO

5-2

Introduction

This chapter describes the alternative First In First Out (FIFO) CAN drivers
provided with xPC Target. The standard CAN drivers for the CAN boards from
Softing GmbH (http://www.softing.com) program the CAN board firmware
to run in Dynamic Object Buffer (DOB) mode. This mode is best suited for
real-time environments where it is mandatory that the driver latency time is
time deterministic. Actually, running the firmware in Dynamic Object Buffer
mode is always the best choice except for the undesired side effect of high driver
latency times.

¢ Sending a CAN message — When sending a CAN message, the latency time
is the time interval between the time accessing the board to provide all the
information for the CAN message to be sent and the time the board returns
the acknowledgment that the information has been received by the
firmware.

® Receiving a CAN message — When receiving a CAN message, the latency
time is the time interval between the time accessing the board to ask for
current data (object data) of a certain CAN identifier and the time the board
returns the actual data and other information about the CAN message.

Disadvantages of Dynamic Object Buffer mode — These latency times are
mainly defined by the reaction time of the board firmware. In the case of the
Softing boards, the latency time is the same for sending and receiving
messages, with a fixed value of about 40 vs. If your xPC Target application has
to send and receive a large number of CAN messages, the overall latency time
can quickly become high and can make it impossible to run the application at
the desired base sample time.

For example, assuming that a specific xPC Target application gets data from
12 CAN identifiers and transmits data by using eight CAN messages, the total
number of CAN board read and write accesses adds up to 20. This results in a
total CAN I/0O latency time of

20*40 vs = 800 wvs

With such an application, base sample times below 800 vs are impossible even
ifthe dynamics of the corresponding Simulink model are simple and would only
need 20 vs of computation time.

Introduction

Advantages of Dynamic Object Buffer mode — However, even if the CAN I/0
latency time in Dynamic Object Buffer mode is high, the benefit of this mode is
that the latency time stays constant almost independent of the traffic volume
on the CAN network. This means that the Dynamic Object Buffer mode is best
suited for xPC Target applications that only deal with a small subset of all CAN
messages going over the CAN network.

FIFO Mode Drivers for CAN Boards from Softing

The CAN boards from Softing support another mode, called First In First Out
(FIFO) mode. In this mode the Dynamic Object Buffer mode abstraction layer
in the firmware is missing, and the firmware plays the role of a slim interface
between the receive and transmit FIFOs and the drivers in the application
code. Because of this slimmer interface, the I/O latency times are considerably
smaller. Writing to the transmit FIFO takes 4 vs per CAN message and
reading one event (CAN message) from the receive FIFO takes 17 vs. Both of
these latency times are smaller than the 40 vs for Dynamic Object Buffer mode.
While writing to the transmit FIFO is efficient, this is not the case for reading
from the receive FIFO. Because the receive FIFO is filled with all CAN
messages (identifiers) going over the CAN network, there can be a lot of data
(CAN messages) that have to be read out of the FIFO even if their data is not
used in the target application. Because of the FIFO structure, all events
(messages) have to be read until the message is returned that is propagated to
the target application. The driver code for reading the receive FIFO is
principally a while loop, and this can add the problem of non-deterministic
latency times.

You resolve the latency time issue in the xPC Target CAN FIFO drivers by
defining a receive FIFO read depth that is a constant number during
application execution. For example, if you assume a FIFO read depth of 5, each
time the Read Receive FIFO driver block is executed at the block sample time,
the driver code reads and returns five events (messages) from the receive FIFO.
This is independent of how many events the FIFO currently contains. There
can be only two messages received in the FIFO and the third to fifth read
attempt might just return the “No new event” code. Nevertheless, because the
FIFO read latency does not exceed 17 vs regardless of the event read out of the
FIFO, the latency time becomes deterministic and is the Read FIFO Depth
multiplied by 17 vs. The driver block returns all new events and therefore all
CAN messages going over the network. If only a small subset of the CAN
messages received must be processed in the target application, the total latency

5 cANI1/0 Support for FIFO

5-4

can easily exceed the latency encountered with the Dynamic Object Buffer
mode for the same application. There is another restriction specific to the FIFO
mode concept. Using more than one Read Receive FIFO block in a Simulink
model is not recommended, because a new event (message) read by one block
instance cannot be read again by another block instance (the event is no longer
in the FIFO buffer). Therefore the entire CAN receive part has to be
concentrated in one Read Receive FIFO block in your model. For the write
transmit FIFO side, this restriction does not apply. Here you can use as many
instances as you want.

The Setup block for the CAN FIFO mode controls the CAN acceptance filters of
the CAN controller. The acceptance filter defines a range of CAN messages not
to be forwarded to the receive FIFO. Filtering out unwanted CAN messages
can drastically reduce the read receive FIFO latency time because the
unwanted messages do not reach the receive FIFO. Unfortunately, the
acceptance filter process uses binary evaluation, which does not allow filtering
messages below and above a certain decimal range. Therefore the use of the
acceptance filter only resolves the problem for a small subset of CAN network
applications. See “Acceptance Filters” on page 5-38 for more information on
this.

Look again at the example of 12 messages to be received and eight messages to
be transmitted. If those 20 messages with their specific identifiers are the only
messages going over the CAN network (100% usage ratio) the total latency
time is

12*17 vs + 8*4 vs = 236 vs

This is a considerable smaller value than the 800 vs that results when you use
Dynamic Object Buffer mode drivers.

For the next case, assume that there are 12 additional messages going
regularly over the network that do not need to be processed by the target
application. Additionally, assume that those messages cannot be filtered by the
CAN controller acceptance filter. Then the total latency time increases to

12*17 vs +20*4 vs = 284 vs

There is no impact on the final result. That is the tradeoff. Therefore the FIFO
mode drivers are best suited for either CAN network monitoring applications
or low-latency CAN applications where the ratio between the number of
messages to be processed and the number of total messages going over the
network is high.

Introduction

FIFO mode drivers are especially suited for monitoring type applications,
because FIFO mode can return additional information such as the bus state or
the reception of error frames. Dynamic Object Buffer mode drivers do not allow
querying such information.

This documentation only covers the differences between the Dynamic Object
Buffer mode drivers (standard drivers), and the FIFO mode drivers introduced
here. It assumes that you are familiar with the Dynamic Object Buffer mode
drivers and have successfully run one of the loop-back tests provided with xPC
Target.

If you use FIFO mode drivers in your model, you must replace all Dynamic
Object Buffer mode blocks (Setup, Send, Receive) with FIFO mode driver
blocks. The CAN-AC2-xxx boards from Softing do not let you run the two CAN
ports in different modes. Therefore the mode has to be same for both ports, but
you can use more than one CAN board and run the boards in different modes
just by selecting the correct I/O driver blocks.

As mentioned in the standard CAN chapter, you should not use the CAN-AC2
(ISA) for new projects. Instead use the CAN-AC2-PCI. Therefore, FIFO mode

drivers are only provided for the CAN-AC2-PCI and the CAN-AC2-104 boards.

5 cANI1/0 Support for FIFO

CAN FIFO Driver Blocks for the CAN-AC2-PCI with Philips

SJA1000 CAN Controller

The driver blocks described here support the CAN-AC2-PCI using FIFO mode.
The Philips SJA1000 chip is used as the CAN controller in this configuration
and supports both standard and extended identifier ranges in parallel. The
driver block set for this board is found in the xPC Target I/O block library in

the group CAN/Softing.

E!Library: wpclib/CAN/Softing
File Edit Wew Formab Help

=0l x|

e T I I S

%

CAMN-ACEZ-ISA CAN-AGERISA CAMN-ACE-PCI
Philips G200 It 527 S 1000

SAN-AGE-104
S.lA 1000

The third block group, CAN-AC2-PCI SJA 1000, contains the FIFO mode

subgroup.

E!Library: wpclib/... Softing /CAMN-AL
File Edit Wew Formab Help

=10l x|

CAN-AGE-PCI B
CAN 1/ CAN 2
Standard ¢ Extanded

Setup

CAN-ACE-PCI B
u] SAN T - Send i}’

Standard 11bit

Send FIFC Niode

CAM-ACE -FCI B
GAN 1 - Receive u}
Standard 11bit

Rece e

CAN FIFO Driver Blocks for the CAN-AC2-PCI with Philips SJAT000 CAN Controller

The highlighted group contains all driver blocks available for FIFO Mode CAN.

ZlLibrary: xpclib/.../CAN-AC2-PCI 534 1000,/FIFO0 Mode

=10l]

File Edit Wiew Format Help

CAN-ACE-PC] B
FIFC: GAN 1S CAN 2
Standamd / Extended

FIFZ Setup

Fort: any

CAN-ACE-FGI BT
FIFC rode
Wi ritz

FIF Read Fiter

FIFC Wirite

CAN-ACE-FGI BT
FIFC rode
HT FIFO el

CAN-ACE-FGI BT
FIFC rode
Frez=t ZMT FIFC

CAN-ACE-PCI B1
FIFZ rode
Read

FIFZ Read X T Level

FIF2 Reset XmT

FIFZ Read

CAN-ACE-PCI B1
FIFZ rode
RCV FIFD kEwel

FIFZ Read RGW Level

CAN-ACE-PCI B1
FIFZ rode
Resat ROV FIFC

FIFD Resst RCY

FIFO Setup Driver Block

The Setup block defines general settings of the installed CAN board(s). The
CAN driver blocks for this board support up to three boards for each target
system, making up to six CAN ports available. For each board in the target
system, you can use one Setup block in a model.

5-7

5 cANI1/0 Support for FIFO

5-8

[Z1Block Parameters: FIFO Setup d |

—canacZpeizetupfifa [mask] (link)

Safting
Cam-aC2-PCI
with 5J41000

—Parameters

Boarc: [

CAN 1 - physical bus: | Highspeed (150 11898] |

CaN 1 - baud rate: I 1 MBaud

CaM 1 - user defined baud rate:

11,431

CaM 1 - acceptance [StdMagk, StdCode, ExtMask, ExtCode]:
jlno0o

CAN 2 - physical bus: | Highspeed (150 11838]

Lol Lo

CaMN 2 - baud rate: I 1 MBaud

CaM 2 - user defined baud rate:

11,431

CaM 2 - acceptance [StdMagk, StdCode, ExtMask, ExtCode]:
jlno0o

[~ Enable eror frame detection

Initialization command structure:
i

Termination:

fi

PCI zlot [-1: autozearch]:

K

Ok LCancel | Help | Apply |

Board — Defines the board being accessed by this driver block instance. If
multiple boards are present in the target PC, you can use the board number
(1...3) to differentiate the boards. The physical board referenced by the board
number depends on the PCI Slot parameter. If just one board is present in the
target system, select board number 1.

CAN 1 - physical bus — Defines the physical CAN bus type of CAN port 1. In
the board’s standard hardware configuration, only high-speed CAN is

CAN FIFO Driver Blocks for the CAN-AC2-PCI with Philips SJAT000 CAN Controller

supported. By extending the board with low-speed CAN piggyback modules,
you can also select low-speed CAN as the physical bus. Do not change this value
to low-speed if no module is present for the corresponding CAN port. If the
module is present (see the Softing user manual on how to install the modules),
you can select between high-speed and low-speed CAN here.

CAN 1 - baud rate — Defines the most common baud rates for CAN port 1. If
special timing is necessary (baud rate), select User defined.

CAN 1 - user defined baud rate — If you select User defined from the CAN
1 Baud rate list, enter the four values for the timing information. The vector
elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

CAN 1 - acceptance — Defines the acceptance filters for the CAN 1 port.
Because the receive FIFO is filled with any CAN messages going over the bus,
the use of the CAN controller acceptance filters becomes important to filter out
unwanted messages already at the controller level. This acceptance filter
information is provided by a row vector with four elements in which the first
two are used to define the acceptance mask and acceptance code for standard
identifiers and the latter two for extended identifiers. The default value
defined by the Setup block does not filter out any messages. For information on
how to define the acceptance information to filter certain messages, see
“Acceptance Filters” on page 5-38.

CAN 2 - physical bus — Defines the physical CAN bus type of CAN port 2. In
the board’s standard hardware configuration, only high-speed CAN is
supported. By extending the board with lows-peed CAN piggyback modules,
you can also select low-speed CAN as the physical bus. Do not set this value
should to low-speed if no module is present for the corresponding CAN port. If
the module is present (see the Softing user manual on how to install the
modules), you can select between high-speed and low-speed CAN here.

CAN 2- baud rate — Defines the most common baud rates for CAN port 2. If
special timing is necessary (baud rate), select User defined.

5-9

5 cANI1/0 Support for FIFO

5-10

CAN 2 - user defined baud rate — If you select User defined from the CAN
2 baud rate list, enter the four values for the timing information. The vector
elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

CAN 2 - acceptance — Defines the acceptance filters for the CAN 2 port.
Because the receive FIFO is filled with any CAN messages going over the bus,
the use of the CAN controller acceptance filters becomes important to filter out
unwanted messages already at the controller level. This acceptance filter
information is provided by a row vector with four elements in which the first
two are used to define the acceptance mask and acceptance code for standard
identifiers and the latter two for extended identifiers. The default value
defined by the Setup block does not filter out any messages. For information on
how to define the acceptance information to filter certain messages, see
“Acceptance Filters” on page 5-38.

Enable error frame detection — If the CAN controller should detect error
frames and forward these to the Receive FIFO, select this box. Selecting this
box makes sense for monitoring applications where you want to be informed
about all events going over the bus. For low-latency time applications, selecting
this box might increase the FIFO Read driver block latency time because the
receive FIFO gets filled with additional events.

Initialization (struct) and Termination (struct) — Define the CAN messages
sent during initialization and termination of the Setup block. For more
information, see the standard CAN driver documentation in “Defining
Initialization and Termination CAN Messages” on page 4-53.

PCI Slot (-1: autosearch) — Defines the PCI slot in which the referenced board
(board number) resides. If only one CAN board is present in the target system,
the value for this control should be -1 for autosearch. This value ensures that
the xPC Target kernel automatically finds the board regardless of the PCI slot
it is plugged into. If two or more boards of this type are physically present in
the target PC, enter the bus number and the PCI slot number of the board
associated with this driver block. Use the format [BusNumber, SlotNumber].
Use the xPC Target function getxpcpci to query the target system for installed

CAN FIFO Driver Blocks for the CAN-AC2-PCI with Philips SJAT000 CAN Controller

PCI boards and the PCI slots they are plugged into. For more information see
help getxpcpci.

The board allows you to terminate each of the two CAN ports separately by
means of DIP switches at the rear panel. Refer to the Softing user manual on
how to set the DIP switches. Both CAN ports must be terminated properly if
you use the loop-back model provided to test the board and drivers.

FIFO Write Driver Block

The FIFO Write driver block is used to write CAN messages into the transmit
FIFO. The firmware running in FIFO mode processes the information found in
the transmit FIFO and finally puts the constructed CAN messages onto the
bus.

The block has one input port of type double. At this port, all necessary
information has to be provided to construct valid CAN messages to be written
into the transmit FIFO. For each CAN message, five elements are passed:

Port

Identifier
Identifier type
Data frame size
Data

Port — The value can be either 1 (port 1) or 2 (port 2) and defines the port the
CAN message is sent from.

Identifier — Identifier of the CAN message to be sent. If it is a standard CAN
message the valid range is 0 to 2047. If the CAN message is extended, the range
is 0 to 229-1.

Identifier type — The value can be either 0 (standard identifier range) or 1
(extended identifier range) and defines the identifier type of the outgoing CAN
message.

Data frame size — The value can be in the range of 0 to 8 and defines the data
frame size in bytes of the outgoing CAN message.

Data — This is the data for the data frame itself and is defined as a double
value (8 bytes). The CAN packing block is used to construct the data as a double
value.

5-11

5 cANI1/0 Support for FIFO

5-12

Because all this information can be dynamically changed in FIFO mode during
application execution, the information is provided at the block input instead of
you setting them through block parameters. To be able to transmit more than
one CAN message per block instance, a matrix signal is used as a container for
all information.

The dimension of the matrix signal entering the block has to be n*5, where n is
the number of CAN messages to be sent by this block instance. Therefore each
row of the matrix signal defines one CAN message and each row combines the
five elements of information defined above (in this order).

For more on how to construct the correct matrix signal for the FIFO write
block, see “Examples” on page 5-40.

For certain applications it might be necessary to make the writing of a CAN
message into the transmit FIFO dependent on the model dynamics. For this
case, the matrix signal can also be of dimension n*6 instead of n*5. In this case,
the sixth column defines whether the corresponding CAN message is written
into the transmit FIFO (1) or not (0).

Z)Block Parameters: FIFD Write 1 7=

—canac2poiwnitefifo [mazk] (link)

Softing
CAM-AC2-PCI
with SJA1000

—Parameters

Board: h

[~ Show status output port

Sample time:
|0.001

OF. I LCancel | Help | Apply |

Board — Define the board used to send the CAN messages defined by this
block instance. For more information about the meaning of the board number,
see the Setup driver block described above. If just one board is present in the
target system, you should select 1.

Show status output port — Select this box to enable the status output port. If
the box is cleared, the block does not have an output port. If enabled, a port is

CAN FIFO Driver Blocks for the CAN-AC2-PCI with Philips SJAT000 CAN Controller

shown. The signal leaving the block is a vector of type double in which the
number of elements depends on the signal dimension of the block input port.
There is one element for each CAN message written into the transmit FIFO
and the value is identical to the return argument of function
CANPC_send_data(...), described in the Softing user manual. Refer to that
manual for more information.

Sample time — Defines the sample time at which the FIFO Write block is
executed during a model (target application) run.

You can use as many instances of the FIFO Write block in the model as needed.
For example, by using two instances of the block, you can send CAN messages
at different sample times. Or you can use multiple instances to structure your
model more efficiently.

FIFO Read Driver Block

The FIFO Read driver block is used to read CAN messages from the receive
FIFO. The firmware running in FIFO mode puts received events (CAN
messages) into the receive FIFO from which the FIFO Read driver reads it.

The FIFO Read driver block has at least one output port of type double. The
signal of this port is a matrix of size m*6, where m is the FIFO Read depth
defined in the block dialog box (see below). For example, if the FIFO read depth
is 5, then the matrix signal of port 1 has size 5%6. Therefore, one row for each
event is read out of the receive FIFO (no new message is considered an event
as well). For information on how to extract data from the matrix signal, see
“Examples” on page 5-40.

Each row with its six elements contains all the information defining a CAN
message:

Port

Identifier
Event type

Data frame size
Timestamp

Data

Port — The value can be either 1 (port 1) or 2 (port 2) and reports the port at
which the CAN message was received.

5-13

5 cANI1/0 Support for FIFO

5-14

Identifier — Identifier of the CAN message being received. If it is a standard

CAN message the range is 0 to 2047. It is an extended CAN message, the range
is 0 to 229-1.

Event type — This value defines the type of event read from the receive FIFO.
The following values are defined in the Softing user manual.

0 No new event

1 Standard data frame received

2 Standard remote frame received

3 Transmission of a standard data frame is confirmed
4 -

5 Change of bus state

6 -

7

8

Transmission of a standard remote frame is confirmed
9 Extended data frame received
10 Transmission of an extended data frame is confirmed
11 Transmission of an extended remote frame is confirmed
12 Extended remote frame received
13 -
14 -
15 Error frame detected

Data frame size — If a data frame has been received, the length of the data in
bytes is reported by this element. Possible values are 0 to 8.

Timestamp — Time at which the event was received. The resolution of the
timestamp counter is 1 vs.

Data — Data of the data frame itself returned as a double value (8 bytes). The
CAN Unpacking block is used to extract the data from the double value.

CAN FIFO Driver Blocks for the CAN-AC2-PCI with Philips SJAT000 CAN Controller

E Block Parameters: FIFO Read x|

—canac2poireadiifo [mazk] [link)

Softing
CAM-AC2-PCI
with SJA1000

—Parameters

Board: At
FIFO read depth:
n

[Show status output part

Sample tirme:
joom

ok I LCancel | Help |

Board — Defines the board used to send the CAN messages defined by this
block instance. For more information about the meaning of the board number,
see the Setup driver block described above. If one board is present in the target
system, select board number 1.

FIFO read depth — Defines the number of receive FIFO read attempts. Each
time the block is executed it reads this fixed number of events (CAN messages),
which lead to a deterministic time behavior regardless of the number of events
currently stored in the receive FIFO. The Read depth (m) also defines the size
of the matrix signal (m*6) leaving the first output port. If no event is currently
stored in the receive FIFO, the FIFO is read anyway, but the event type is
reported as 0 (no new event).

Show status output port — Select this box to enable the Status output port.
If the box is cleared (disabled), the block has one output port for the events. If
enabled, a second port is shown. The signal leaving that port is a vector of type
double with two elements:

[Number of lost messages (events), Bus state]

5-15

5 cANI1/0 Support for FIFO

5-16

The first element returns the current value of the lost messages counter. The
receive FIFO can store up to 255 events. If the receive FIFO is not regularly
accessed for reading events, the FIFO is filled and the lost messages counter
starts to count up. This is an indicator that events (messages) will be
unavoidably lost. The second element returns the current bus state. Possible
values are

0 Error active
1 Error passive
2 Bus off

Sample time — Defines the sample time at which the FIFO Read block is
executed during a model (target application) run.

It is strongly recommended that you use only one instance of this block per
physical CAN board in your model. Otherwise you might get the unwanted
behavior that one instance would read events that must be processed by blocks
connected to the other, second instance.

FIFO Read Filter Block

This is a utility block for the CAN FIFO driver block set, but does not actually
access the CAN board or any other hardware device. This block is usually
connected to the first output port of the FIFO Read driver block and allows

filtering events out of the event matrix, the signal leaving the FIFO Read
driver block.

The block code walks through the rows of the incoming event matrix signal and
looks for events matching the criteria defined in the block dialog box. If it
matches, the entire event information (row) is written to the block’s first output
port. If more than one row matches the criteria, the later event overwrites the
earlier event.

The block has one input port and two output ports. The input port is of type
double and accepts a matrix signal of size m*6. The two output ports are of type
double as well. The first output is a row vector (1*6), the filtered event, and the
second outputs a scalar value that reports the number of matching events the
filter block has processed.

CAN FIFO Driver Blocks for the CAN-AC2-PCI with Philips SJAT000 CAN Controller

[1Block Parameters: FIFO Read Filker 21x|

r—canrcvfifafilker [mask] [link]

CAM
FIFO Fead Filter

—Parameters

CAN port: [-

teszzage twvpe command [SOF SRF EDF ERF EF ME CBS):

Meszage twpe selection mode; I Enciude ﬂ
|dentifier[z]:

i

|dentifier zelection mode: I Exclude ;I

ak. I Cancel | Help | Apply |

CAN port — Defines the filter criterion for the CAN port. From the list, select
Any, 1, or 2.

Message type command — Defines the filter criterion for the event types. This
entry can consist of a concatenation of space-delimited keywords that are

SDF Standard data frame

SRF Standard remote frame
EDF Extended data frame
ERF Extended remote frame
EF Error frame

NE No new event

CBS Change of bus state

Message type selection mode — Defines how the event type (message type),
from the Message type command parameter, is treated. If you select Include,
the event type criterion is the sum of the concatenated keywords. If you select
Exclude, the event type criterion is equal to all event types minus the sum of
the concatenated keywords.

Identifier(s) — Defines the filter criterion for the CAN message identifiers. A
set of identifiers can be provided as a row vector.

5-17

5 cANI1/0 Support for FIFO

5-18

Identifier selection mode — Defines how the identifier criterion, from the
Identifier(s) parameter, is treated. If you select Include, the identifier
criterion is the sum of all specified identifiers. If you select Exclude, the
identifier criterion is equal to all identifiers minus the specified identifiers.

You can use as many instances of this block in your model as needed. Usually,
you connect several instances in parallel to the output of the FIFO Read driver
block to filter out particular messages or events. For more information on how
to do this, see “Examples” on page 5-40.

FIFO Read XMT Level Driver Block

The FIFO Read XMT Level driver block is used to read the current number of
CAN messages stored in the transmit FIFO to be processed by the firmware.
The transmit FIFO can store up to 255 messages. If it is full and a FIFO write
driver block tries to add another message to the transmit FIFO, the passed
messages are lost. You can use this driver block to check for this condition and
take appropriate action. For example, you could stop the execution or wait for
a nonfull transmit FIFO.

The block has a single output port of type double returning a scalar value
containing the current transmit FIFO level (number of messages to be
processed).

E Block Parameters: FIFO Read XMT Ley x|

—canacZreadsmififolevel [mazk] [link)

Softing
CAM-AC2-PCI
with SJA1000

—Parameters

Board -

Sample time:
joom

0K I LCancel | Help |

Board — Defines the board accessed to read the current transmit FIFO level.
For more information about the meaning of the board number, see the Setup
driver block described above. If just one board is present in the target system,
select board number 1.

CAN FIFO Driver Blocks for the CAN-AC2-PCI with Philips SJAT000 CAN Controller

Sample time — Defines the sample time at which the FIFO Read XMT Level
driver block is executed during a model (target application) run.

FIFO Reset XMT Driver Block

The FIFO Reset XMT driver block is used to reset the transmit FIFOs. This
deletes all messages currently stored in the transmit FIFO and reset the level
counter to 0. As an example, you can use this driver block to reset the transmit
FIFO after having detected a fault condition.

The block has a single input port of type double. If a scalar value of 1 is passed,
the transmit FIFO is reset. If a scalar value of 0 is passed, no action takes
place.

E Block Parameters: FIFO Reset XMT x|

—canac2rezetumtfifo [mask] (link]

Softing
CAM-AC2-PCI
with SJA1000

—Parameters

Board: h

Sample time:
|0.001

ak. I Cancel | Help | Apply |

Board — Defines the board accessed to reset the transmit FIFO. For more
information about the meaning of the board number, see the Setup driver block
described above. If just one board is present in the target system, select board
number 1.

Sample time — Defines the sample time at which the FIFO Reset XMT driver
block is executed during a model (target application) run.

5-19

5 cANI1/0 Support for FIFO

FIFO Read RCV Level Driver Block

The FIFO Read RCV level driver block reads the current number of CAN
messages stored in the receive FIFO. The receive FIFO can store up to 255
events (messages). If it is full and no FIFO read driver block attempts to read
the stored events, new incoming events are lost, as shown by the lost message
counter incrementing. You can use this driver block to check for this condition

and take appropriate action, such as stopping the execution or resetting the
receive FIFO.

The block has a single output port of type double returning a scalar value
containing the current receive FIFO level (number of messages to be
processed).

[]Block Parameters: FIFD Read RCY Ley |

—canac2readrcyfifolevel [maszk] [link)

Safting
CaM-aC2-PCl
with SJA1000

—Parameters

Boarc: [N

Sample tirme:
joom

0K I LCancel | Help |

Board — Defines the board accessed to read the current receive FIFO level.
For more information about the meaning of the board number, see the Setup
driver block described above. If just one board is present in the target system,
select board number 1.

Sample time — Defines the sample time at which the FIFO Read RCV Level
driver block is executed during a model (target application) run.

5-20

CAN FIFO Driver Blocks for the CAN-AC2-PCI with Philips SJAT000 CAN Controller

FIFO Reset RCV Driver Block

The FIFO Reset RCV driver block resets the receive FIFO. This deletes all
messages currently stored in the receive FIFO and reset the level counter to 0.
As an example, you can use this driver block to reset the receive FIFO after
having detected a fault condition.

The block has a single input port of type double. If a scalar value of 1 is passed,
the transmit FIFO is reset. If a scalar value of 0 is passed, no action takes
place.

[Z1Block Parameters: FIFD Reset RCY 21x|

—canacresetroviifo [mask) [link]

Safting
CaM-aC2-PCl
with SJA1000

—Parameters

Evarc | — -

Sample tirme:
joom

ak. I Cancel | Help | Apply |

Board — Defines the board accessed to reset the receive FIFO. For more
information about the meaning of the board number, see the Setup driver block
described above. If just one board is present in the target system, select board
number 1.

Sample time — Defines the sample time at which the FIFO Reset RCV driver
block is executed during a model (target application) run.

5-21

5 cANI1/0 Support for FIFO

5-22

CAN FIFO Driver Blocks for the CAN-AC2-104 with Philips
SJA1000 CAN Controller

The driver blocks described here support the CAN-AC2-104 (PC/104) using
FIFO mode. The Philips SJA1000 chip is used as the CAN controller in this
configuration and supports both standard and extended identifier ranges in
parallel. The driver block set for this board is found in the xPC Target I/O block
library in the group CAN/Softing.

E!Library: wpclib/CAN/Softing 10| =|
File Edit Wew Formab Help

B T 1 I S B e

CAMN-ACEZ-ISA CAN-AGERISA CAN-AGCZ-FGI CAN-AGE-104
Philips G200 Intz1 527 SJA 1000 SJa 1000

The fourth block group, CAN-AC2-104 SJA 1000, contains the FIFO Mode
subgroup.

E!Library: wpclib;... Softing /CAMN-AL 10| =|
File Edit Wew Formab Help

CAN-AGE-104 B1
CAN TS CAN 2
Standamd / Extended

Setup

GAN-ACE-104 B
a CAN 1 - Send E}-

Standard 11bit

Send FIFO hiade

CAN-ACE-104 B
CAN 1 - Recaive 0
Standanrd 11bit

Rece e

CAN FIFO Driver Blocks for the CAN-AC2-104 with Philips SJATO00 CAN Controller

The highlighted group contains all the driver blocks available for FIFO mode
CAN.

ZLibrary: xpclib/.../CAN-AC2-104 51A 1000,FIFD Mode o [w] =4

File Edit Wiew Format Help

CAN-AGE-104 B Fort: any
FIFC: AR 1S CAN 2 -
Standard f Extended
A
FIF2 Setup FIFC Read Fiter
CARN-ACGE-104 B CARN-ACGE-104 B CARN-ACGE-104 B
FIFC rode FIFC rode FIFC rode
Wit XT FIFC kevel Reset X MT FIFC
FIFC Wi rite: FIFZ Read XmT Lewvel FIFC Reset XmT
CAN-AGE-104 B1 CAN-AGE-104 B1 CAN-AGE-104 B1
FIFC riode FIFC riode FIFC riode
Read RCV FIFD kEwel Resat ROV FIFC
FIF2 Read FIFZ Read RCW Lewel FIFC Reszt ROV

FIFO Setup Driver Block

The FIFO Setup driver block defines general settings of the installed CAN
boards. The CAN driver blocks for this board support up to three boards for
each target system, making up to six CAN ports available. For each board in
the target system, you must use exactly one Setup driver block.

5-23

5 cANI1/0 Support for FIFO

5-24

[Z1Block Parameters: FIFD Setup d |

—canac2104zetupfifo [maszk] [link)

Softing
CaM-AC2-104
with 5J47000
—Pararmeters
Board: [EEGEGCGGCGGEGG——
CaM 1 - baud rate; I 1 MBaud LI
CaAMN 1 - user defined baud rate:
11,431
CaM 1 - acceptance [StdMagk, StdCode, ExtMask, ExtCode]:
jlnooo
CaM 2 - baud rate; I 1 MBaud LI
CaM 2 - user defined baud rate:
11,431
CaM 2 - acceptance [StdMagk, StdCode, ExtMask, ExtCode]:
jlnooo

™ Enable emar frame detection
Initialization command structure:
i

Termination:

fi

1/0 basze address:

24200

temom base address:
|0xd0000

Interrupt line: I Nare LI

OF. I LCancel | Help | Apply |

Board — Defines the board accessed by this driver block instance. If multiple
boards are present in the target PC, you can use the board number (1...3) to
differentiate the boards. The physical board referenced by the board number
depends on the PCI Slot parameter. If just one board is present in the target
system, select board number 1.

CAN FIFO Driver Blocks for the CAN-AC2-104 with Philips SJATO00 CAN Controller

CAN 1 - baud rate — Defines the most common baud rates for CAN port 1. If
special timing is necessary (baud rate), you can select User defined.

CAN 1 - user defined baud rate — If you selected User defined from the CAN
1 - baud rate list, enter four values for the timing information. The vector
elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

CAN 1 - aceeptance — Defines the acceptance filters for CAN port 1. Because
the receive FIFO is filled with any CAN messages going over the bus, the use
of the CAN controller acceptance filters becomes important to filter out
unwanted messages already at the controller level. This acceptance filter
information is provided by a row vector with four elements in which the first
two are used to define the acceptance mask and acceptance code for standard
identifiers and the latter two for extended identifiers. The default value
defined by the Setup block does not filter out any messages. For information on
how to define the acceptance information to filter certain messages, see
“Acceptance Filters” on page 5-38.

CAN 2 - baud rate — Defines the most common baud rates for CAN port 2. If
special timing is necessary (baud rate), you can select User defined.

CAN 2- user defined baud rate — If you selected User defined from the CAN
1 - baud rate list, enter four values for the timing information. The vector
elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual for this
board.

CAN 2 acceptance — Defines the acceptance filters for CAN port 2. Because
the receive FIFO is filled with any CAN messages going over the bus, the use
of the CAN controller acceptance filters becomes important to filter out
unwanted messages already at the controller level. This acceptance filter
information is provided by a row vector with four elements in which the first
two are used to define the acceptance mask and acceptance code for standard
identifiers and the latter two for extended identifiers. The default value

5-25

5 cANI1/0 Support for FIFO

5-26

defined by the Setup block does not filter out any messages. For information on
how to define the acceptance information to filter certain messages, see
“Acceptance Filters” on page 5-38.

Enable error frame detection — Defines whether the CAN controller should
detect error frames and forward these to the receive FIFO. Selecting this box
makes sense for monitoring applications where you want to be informed about
all events going over the bus. For low-latency time applications, selecting this
box might increase the FIFO Read driver block latency, because the receive
FIFO is filled with additional events.

Initialization command structure and Termination — Defines CAN
messages sent during initialization and termination of the Setup block. For
more information, see Chapter 4, “CAN I/O Support.”

I/0 base address — Defines the I/O base address of the board to be accessed
by this block instance. The I/O base address is given by the DIP switch setting
on the board itself. The I/O address range is 3 bytes and is mainly used to
identify the memory base address the board should use. See the Softing user
manual for this board on how you can set the I/O base address. The I/O base
address entered in this control must correspond with the DIP switch setting on
the board. If more than one board is present in the target system, you must
enter a different I/O base address for each board. In this case, the I/0O base
address itself defines which board is referenced by which board number.

Memory base address — Defines the memory base address of the board to be
accessed by this block instance. The memory base address is a software setting
only (no corresponding DIP switch is found on the board). The memory address
range is 4 KB. If more than one board is present in the target system, you must
enter a different memory base address for each board and you must ensure that
the defined address ranges do not overlap. Because the xPC Target kernel only
reserves a subset of the address range between 64 KB and 1 MB for
memory-mapped devices, the address ranges must lie within the following
range:

C0000-DC000

The board allows you to terminate each of the two CAN ports separately by
means of DIP switches at the back panel of the board. Refer to the Softing user
manual on how to set the DIP switches. Both CAN ports must be properly
terminated before you can use the loop-back model provided to test the board
and drivers.

CAN FIFO Driver Blocks for the CAN-AC2-104 with Philips SJATO00 CAN Controller

Interrupt line — Select an interrupt line from the list.

FIFO Write Driver Block

The FIFO Write driver block is used to write CAN messages into the transmit
FIFO. The firmware running in FIFO mode then processes the information
found in the transmit FIFO and finally puts the constructed CAN messages
onto the bus.

The block has one input port of type double. At this port, you must provide all
necessary needed to construct valid CAN messages to be written into the
transmit FIFO. For each CAN message, five elements have to be passed:

Port

Identifier
Identifier type
Data frame size
Data

Port — The value can be either 1 (port 1) or 2 (port 2) and defines at which port
the CAN message is sent from.

Identifier — Identifier of the CAN message to be sent. If it is a standard CAN
message, the valid range is 0 to 2047. If extended, the range is 0 to 229-1.

Identifier type — The value can be either 0 (standard identifier range) or 1
(extended identifier range) and defines the identifier type of the outgoing CAN
message.

Data frame size — The value can be in the range of 0 to 8 and defines the data
frame size in bytes of the outgoing CAN message

Data — Data for the data frame itself, defined as a double value (8 bytes). The
CAN Packing block is used to construct the data as a double value.

Because all this information can be dynamically changed in FIFO mode during
application execution, the information is provided at the block input instead of
using the block parameters. To transmit more than one CAN message per block
instance, use a matrix signal as a container for all information.

The dimension of the matrix signal entering the block must be n*5, where n is
the number of CAN messages to be sent by this block instance. Therefore, each
row of the matrix signal defines one CAN message and each row combines the
five elements of information defined above (in this order).

5-27

5 cANI1/0 Support for FIFO

5-28

For more information on how to construct the correct matrix signal for the
FIFO write block, see “Examples” on page 5-40.

For certain applications it might be necessary to make the writing of a CAN
message into the transmit FIFO dependent on the model dynamics. For this,
the matrix signal can also be of dimension n*6 instead of n*5. In this case, the
sixth column defines whether the corresponding CAN message is written into
the transmit FIFO (value 1) or not (value 0).

[Z1Block Parameters: FIFD Write d |

—canac:10dwritefifa mask] (link)

Safting
CaM-aC2-104
with SJA1000

—Parameters

Boad -

[Show status output part
Sample tirme:
joom

OF. I LCancel | Help | Apply |

Board — Defines the board used to send the CAN messages defined by this
block instance. For more information about the meaning of the board number,
see the Setup driver block described above. If just one board is present in the
target system, select board number 1.

Show status output port — Selecting this check box lets you enable the Status
output port. If the box is cleared (disabled), the block does not have an output
port. If enabled, a port is shown. The signal leaving the block is a vector of type
double in which the number of elements depends on the signal dimension of the
block input port. There is one element for each CAN message written into the
transmit FIFO and the value is identical to the return argument of function
CANPC_send_data(...), described in the Softing user manual. Refer to that
manual for more information.

Sample time — Defines the sample time at which the FIFO Write block is
executed during a model (target application) run.

CAN FIFO Driver Blocks for the CAN-AC2-104 with Philips SJATO00 CAN Controller

You can use as many instances of the FIFO Write block in the model as needed.
For example, by using two instances of the block with different sample times,
you can send CAN messages out at different rates. Or you can use multiple
instances to structure your model more efficiently.

FIFO Read Driver Block

The FIFO Read driver block reads CAN messages from the receive FIFO. The
firmware running in FIFO mode puts received events (CAN messages) into the
receive FIFO. From here, the FIFO Read driver reads the events out. The
receive FIFO can store up to 255 events (messages). If it is full and no FIFO
Read driver block attempts to read the stored events, new incoming events are
lost. This is reflected by the incrementing of the lost message counter. You can
use the FIFO Read RCV Level driver block to check for this condition and take
appropriate action (for example, like stopping the execution or resetting the
receive FIFO).

The FIFO Read driver block has at least one output port of type double. The
signal of this port is a matrix of size m*6, where m is the FIFO read depth
defined in the block’s dialog box (see below). For example, if the FIFO read
depth is 5, the matrix signal of port 1 has size 5%6. Therefore, there is one row
for each event read from the receive FIFO (no new message is considered as an
event as well). For information on how to extract data from the matrix signal,
see “Examples” on page 5-40.

Each row with its six elements contains all the information defining a CAN
message:

Port

Identifier
Event type

Data frame size
Timestamp

Data

Port — The value is either 1 (port 1) or 2 (port 2) and reports the port at which
the CAN message was received.

Identifier — Identifier of the CAN message being received. If it is a standard
CAN message, the range is 0 to 2047. If the CAN message is extended, the
range is 0 to 2291,

5-29

5 cANI1/0 Support for FIFO

5-30

Event type — Defines the type of event read from the receive FIFO. The
following values are defined from the Softing user manual:

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

No new event

Standard data frame received

Standard remote frame received

Transmission of a standard data frame is confirmed
Change of bus state

Transmission of a standard remote frame is confirmed
Extended data frame received

Transmission of an extended data frame is confirmed
Transmission of an extended remote frame is confirmed
Extended remote frame received

Error frame detected

Data frame size — If a data frame has been received, the length of the data in
bytes is reported by this element. Possible values are 0 to 8.

Timestamp — Reports the time at which the event was received. The
resolution of the timestamp counter is 1us.

Data — Data of the data frame itself. It is returned as a double value (8 bytes).
The CAN Unpacking block is used to extract the data from the double value.

CAN FIFO Driver Blocks for the CAN-AC2-104 with Philips SJATO00 CAN Controller

E Block Parameters: FIFO Read x|

—canace0dreadfifo [mazk] (link]

Softing
CAM-AC2-104
with SJA1000

—Parameters

Board: At
FIFO read depth:
n

[Show status output part

Sample tirme:
joom

ok I LCancel | Help |

Board — Defines the board to use to send the CAN messages defined by this
block instance. For more information about the meaning of the board number,
see the Setup driver block described above. If just one board is present in the
target system, select board number 1.

FIFO read depth — Defines the number of receive FIFO read attempts. Each
time the block is executed, it reads this fixed number of events (CAN
messages), which leads to a deterministic time behavior independent of the
number of events currently stored in the receive FIFO. The read depth (m) also
defines the size of the matrix signal (m*6) leaving the first output port. If no
event is currently stored in the receive FIFO, the FIFO is read anyway but the
event type is reported as 0 (no new event).

Show status output port — Lets you enable the status output port. If the box
is cleared (disabled), the block has one output port for events. If enabled, a
second port is shown. The signal leaving that port is a vector of type double
with two elements:

[Number of lost messages (events), Bus state]

The first element returns the current value of the lost messages counter. The
receive FIFO can store up to 255 events. If the receive FIFO is not regularly

accessed for reading events, the FIFO is filled and the lost messages counter
starts to increment. This is an indicator that events (messages) will be

5-31

5 cANI1/0 Support for FIFO

5-32

unavoidably lost. The second element returns the current bus state. Possible
values are

3 Error active
4 Error passive
5 Bus off

Sample time — Defines the sample time at which the FIFO Read block is
executed during a model (target application) run.

Only use one instance of this block per physical CAN board in your model.
Otherwise you may get unwanted behavior when one instance reads events
while the events are being processed by blocks connected to the other, second
instance.

FIFO Read Filter Block

This is a utility block for the CAN FIFO driver block set, but does not actually
access the CAN board or any other hardware device. This block is usually
connected to the first output port of the FIFO Read driver block. It allows

filtering events from the event matrix, which is the signal leaving the FIFO
Read driver block.

The block code walks through the rows of the incoming event matrix signal and
looks for matching events according to the criteria defined in the block’s dialog
box. If match is found, the entire event information (row) is written to the
block’s first output port. If more than one row matches the criteria, the later
event overwrites the earlier event.

The block has one input port and two output ports. The input port is of type
double and accepts a matrix signal of size m*6. The two output ports are of type
double as well. The first output is a row vector (1%*6), the filtered event. The
second output is a scalar value that reports the number of matching events the
filter block has processed.

CAN FIFO Driver Blocks for the CAN-AC2-104 with Philips SJATO00 CAN Controller

[Z1Block Parameters: FIFO Read Filter 21x|

r—canrcvfifafilker [mask] [link]

CAM
FIFO Fead Filter

—Parameters

CAN port: [-

teszzage twvpe command [SOF SRF EDF ERF EF ME CBS):

Meszage twpe selection mode; I Enciude ﬂ
|dentifier[z]:

i

|dentifier zelection mode: I Exclude ;I

ak. I Cancel | Help | Apply |

The dialog box of the FIFO Read Filter block lets you define the following
settings:

CAN port — Defines the filter criterion for the CAN port. Possible choices are
Any, 1, or 2.

Message type command — Defines the filter criterion for the event types. This
entry can consist of a concatenation of space-delimited keywords:

SDF Standard data frame
SRF Standard remote frame
EDF Extended data frame
ERF Extended remote frame
EF Error frame

NE No new event

CBS Change of bus state

Message type selection mode — Defines how the event type (message type)
listed in Message type command is treated. If you select Include, the event
type criterion is the sum of the concatenated keywords. If you select Exclude,
the event type criterion is equal to all event types minus the sum of the
concatenated keywords.

5-33

5 cANI1/0 Support for FIFO

5-34

Identifier(s) — Defines the filter criterion for the CAN message identifiers. A
set of identifiers can be provided as a row vector.

Identifier selection mode — Defines how the identifier criterion entered in
the Identifier(s) parameter is treated. If you select Include, the identifier
criterion is the sum of all specified identifiers. If you select Exclude, the
identifier criterion is equal to all identifiers minus the specified identifiers.

You can use as many instances of this block in your model as needed. Usually,
you connect several instances in parallel to the output of the FIFO Read driver
block to filter out particular messages or events. For more information on how
to do this, see “Examples” on page 5-40.

FIFO Read XMT Level Driver Block

The FIFO Read XMT Level driver block is used to read the current number of
CAN messages stored in the transmit FIFO to be processed by the firmware.
The transmit FIFO can store up to 255 messages. If it is full and a FIFO write
driver block tries to add another message to the transmit FIFO, the passed
messages are lost. You can use this driver block to check for this condition and
take appropriate action. For example, you can stop the execution or wait for the
transmit FIFO to empty.

The block has a single output port of type double returning a scalar value
containing the current transmit FIFO level (number of messages to be
processed).

[1Block Parameters: FIFD Read XMT Lew |

—canacZreadumtfifolevel [mask)] [link]

Safting
CaM-aC2-104
with SJA1000

—Parameters

Boarc: [N

Sample tirme:
joom

0K I Cancel Help

CAN FIFO Driver Blocks for the CAN-AC2-104 with Philips SJATO00 CAN Controller

Board — Defines the board to access to read the current transmit FIFO level.
For more information about the meaning of the board number, see the Setup
driver block described above. If just one board is present in the target system,
select board number 1.

Sample time — Defines the sample time at which the FIFO Read XMT Level
driver block is executed during a model (target application) run.

FIFO Reset XMT Driver Block

The FIFO Reset XMT driver block resets the transmit FIFO. This deletes all
messages currently stored in the transmit FIFO and resets the level counter to
0. For example, you can use this driver block to reset the transmit FIFO after
detecting a fault condition.

The block has a single input port of type double. If a scalar value of 1 is passed,
the transmit FIFO is reset; if 0 is passed, no action takes place.

Z)Block Parameters: FIFO Resek XMT 2=

—canac2rezetumtfifo [mask] (link]

Softing
CAM-AC2-104
with SJA1000

—Parameters

Board: h

Sample tirme:
joom

ak. I Cancel | Help | Apply |

Board — Defines the board to access to reset the transmit FIFO. For more
information about the meaning of the board number, see the Setup driver block
described above. If just one board is present in the target system, select board
number 1.

Sample time — Defines the sample time at which the FIFO Reset XMT driver
block is executed during a model (target application) run.

5-35

5 cANI1/0 Support for FIFO

5-36

FIFO Read RCV Level Driver Block

The FIFO Read RCV Level driver block reads the current number of CAN
messages stored in the receive FIFO. The receive FIFO can store up to 255
events (messages). If it is full and no FIFO Read driver block attempts to read
the stored events, new incoming events are lost. This is reflected by the
incrementing of the lost message counter. You can use this driver block to
check for this condition and take appropriate action (for example, like stopping
the execution or resetting the receive FIFO).

The block has a single output port of type double returning a scalar value
containing the current receive FIFO level (number of messages to be
processed).

[1Block Parameters: FIFD Read RCY Ley |

—canac2readrcyfifolevel [mask] [link)

Safting
CaM-aC2-104
with SJA1000

—Parameters

Boarc: [N

Sample tirme:
joom

0K I LCancel | Help |

Board — Defines the board to access to read the current receive FIFO level.
For more information about the meaning of the board number, see the Setup
driver block described above. If just one board is present in the target system,
select board number 1.

Sample time — Defines the sample time at which the FIFO Read RCV Level
driver block is executed during a model (target application) run.

FIFO Reset RCV Driver Block

The FIFO Reset RCV driver block resets the receive FIFO. This deletes all
messages currently stored in the receive FIFO and resets the level counter to
0. For example, you can use this driver block to reset the receive FIFO after
detecting a fault condition.

CAN FIFO Driver Blocks for the CAN-AC2-104 with Philips SJATO00 CAN Controller

The block has a single input port of type double. If a scalar value of 1 is passed,
the transmit FIFO is reset; if 0 is passed no action takes place.

[Z1Block Parameters: FIFD Reset RCY 21x|

—canacresetroviifo [mask) [link]

Safting
CaM-aC2-104
with SJA1000

—Parameters

Evarc | — -

Sample tirme:
joom

ok, I LCancel | Help | Laply |

Board — Defines the board to access to reset the receive FIFO. For more
information about the meaning of the board number, see the Setup driver block

described above. If just one board is present in the target system, select board
number 1.

Sample time — Defines the sample time at which the FIFO Reset RCV driver
block is executed during a model (target application) run.

5-37

5 cANI1/0 Support for FIFO

5-38

Acceptance Filters

As mentioned earlier, you can use the CAN controller’s acceptance filters to
ensure that certain received messages referenced by their identifiers are
written into the receive FIFO. Therefore, fewer read attempts are necessary to
get at the messages that are of importance for the target application.

The behavior of the acceptance filter is described for standard and extended
identifier ranges individually (one for standard identifiers and one for
extended identifiers). Each acceptance filter is defined by a mask parameter
and a code parameter.

The mask parameter defines, for each bit of the identifier, whether the filtering
process cares about this bit or not. A 0 means “don’t care” and a 1 means “do
care.”

The code parameter then defines, for each bit of the identifier, that the filtering
process cares about (defined by the mask parameter), what the bit value has to
be (0 or 1).

For standard identifiers the mask parameter and code parameter must be
both, in the range 0 to 2047. For extended identifiers the mask parameter and
code parameter must be both, in the range 0 to 229-1.

The filtering process evaluates the following binary expression:

and(xor(mask, identifier), code)

If all bits of the resulting value are 0, the message with this identifier is
accepted. If any bit is 1, the message is voided.

According to this description, acceptance filters work using binary evaluation,
while most applications differentiate messages (identifiers) in a decimal or
hexadecimal manner. As a consequence, it is possible to filter messages, whose
identifiers are above a certain decimal number. The opposite (identifiers below
a certain decimal number) cannot be achieved in a general way.

Acceptance Filters

Examples

The default values for the mask parameter and the code parameter in the FIFO
setup driver block are both 0. These parameter values ensure (the above
expression always evaluates to 0) that all incoming messages will reach the
receive FIFO (no filtering takes place). All parameter values are defined using
decimal numbers. You can use the MATLAB function hex2dec to define
hexadecimal numbers in the dialog box entry.

Assume a CAN application where messages with the following identifiers
(standard) are crossing the CAN network:

2-30, 48-122 (decimal)

Additionally, only incoming messages 4-29 must be processed by the target
application. Ideally, all messages not having identifiers 4-29 would be filtered
out, but the mask and code parameters do not allow this exact scheme. The
closest you can achieve is filtering out all messages with identifiers above 31
by using value 2047-31=2016 for the mask parameter and value 0 for the code
parameter. The messages with identifier 0, 1, 2, and 3 cannot be filtered out
and are returned by the FIFO read driver block, even if they do not need to be
processed by the target application.

5-39

5 cANI1/0 Support for FIFO

5-40

Examples

This section includes the following topics:

¢ “Example 1” on page 5-40 — Loop-back test from CAN port 1 to CAN port 2
¢ “Example 2” on page 5-42 — Filtering out events

¢ “Example 3” on page 5-43 — Constructing CAN messages dynamically at
run-time

¢ “Example 4” on page 5-44 — Stopping the execution when a FIFO overflow
occurs

¢ “Example 5” on page 5-44 — Stopping the execution when a FIFO overflow
occurs

¢ “Example 6” on page 5-45 — Using CAN acceptance filters

Example 1

Start with a simple model using the FIFO Setup block, FIFO Write block, FIFO
Read block, and FIFO Read Filter block. The entire CAN network consists of a
single physical connection between CAN port 1 and port 2 (loop-back
configuration). Both CAN ports must be terminated properly.

The objective of the application is the following:
* Send a message with extended identifier 5100 and change data every
millisecond on port 1.

® Send a message with standard identifier 112 and change data every even
millisecond on port 1.

® Send a message with standard identifier 114 and change data every odd
millisecond on port 1.

® Read three events every millisecond from the receive FIFO on port 2.

¢ Display the incoming data of the three messages separately.

* Do not use acceptance filtering (all messages are accepted).

The data transmitted with the CAN messages are double values in all the
following examples. This has been chosen for simplicity. You should refer to the

bit-packing and bit-unpacking chapter of the standard CAN driver
documentation on how to construct the data.

The first implementation uses the following scheme.

Examples

E!upccanpcififul * ;IEILI

File Edit View Simulation Format Tools Help

The matrix signal entering the FIFO Write block consists of all three messages
including the Control element (sixth element); therefore the matrix size is [3,6].
The sample time of the FIFO Write block is defined as 1 millisecond. For the
standard identifiers that must be sent out every other millisecond, the Control
element is alternated accordingly. You do this by using a Unit delay block with
corresponding feedback as the Control element value.

The FIFO Read block has a read depth of 3 and also a base sample of 1
millisecond. Three FIFO filter blocks are connected to the output of the FIFO
read block (in parallel) to extract the information of the incoming CAN
messages. You can display the model by typing, in the MATLAB Command
Window, either xpccanpcififo1 or xpccani04fifol.

11 slo0 1 8]

hessage 5100 EXT

CAN-ACZ.PCI BT

FIFD: CAN 1/CANM 2 Data, message 5100
Standard / Extended

Venca GAN-ACZFCI BT
= FIFD mode Tamer Scope
L1 Wi

Seope (xPG)3

Wistrec
Goncatenation FIFQ Wrhe

FIFC Setup

ut

Tamet Scape
Gontm| message 5100 u UIE) ’g‘d 4 F

Port 2 Seieotnr Seape (<PG) 1

1z o &) +' EDF
Wessage 112 510 +5100 '. »u UE

FIFO Read Fiter 1 Selector!

U uE Targ‘edt s;upe

Data, message 112

B 2R

Par: 2 SekoioR Soape (FGI5

> +: 5DF
CAN-ACZ-PCIET b » ..3 Tamget Scope
Mo ks . -

1l 119 o &
[1 Faad FIFD Read Fiter® Selestor

Seope (PG)

Message 114 STD

FIFQ Fead
Seope RPCI2
Tamget Scope o 2 Selestort Scope (PG)T
1d: 2

i o T —

FIFO Read Fiker3 Sekector

Tamet Scope
u UiE} ik

L

Data, message 114

The model uses several xPC Target scope blocks to display different types of
data on the target screen:
® Scope 1 (numerical) displays the status vector leaving the FIFO Write block.

® Scope 2 (numerical) displays the status vector [lost-message-counter, bus
state] leaving the FIFO Read block.

® Scope 3 (graphical) plots the data of all three CAN messages being received.

5 cANI1/0 Support for FIFO

5-42

® Scopes 4-6 (numerical) displays the other relevant message data of the three
incoming CAN messages individually (port, identifier, type, data length,
timestamp).

Example 2

When looking at the time behavior of the model, you can observe that at each
millisecond two CAN messages are sent out via the FIFO Write block, while the
FIFO Read block reads three events each millisecond from the receive FIFO.
This implies that one of the three events leaving the FIFO Read block is of type
No new event. You can show this by attaching another FIFO Filter block in
parallel that filters “No new events”, and then displaying the second output
port, which reports the number of matching events. You can display the model
by typing, in the MATLAB Command Window, either xpccanpcififo2 or
xpccan104fifo2.

ﬂxpccanpciﬁhz * ;IEIEI

File Edit Wew Simulation Format Tools Help

[1 s1o0 1 8]

hessage 5100 EXT

CAN-ACZPCI BT

Standamd [Extended

Ver Gat GAN-ACZPCI BT
jm— FIFS mode Tamer Scope
CJ e -

FIFD Setup

FIFO: GAN 1 { GAN 2
Data, message 5100 — Scope GFCI3
Ganeanation FIFO: Wit
Tamet Scope

GControl message 5100 vooue
o 2 Fekeeor Seape (I

oz o0 s »| s EDF

— + 5100 uuE

FIFC Read Filter 1 Seketorl

Tamet Scope
u UIE} it

Port 2 Selesto2 Seope EPG)S

Cata, message 112

B

GAN-AG2-PGI B1 L :f:’; " e Tamet Scope
FIFG mode & Id: 3

1 114 o &
‘ ! Fead FIFG Read Fiker2 Seketor

Seope [FPC)

hessage 114 STD

¥

FIFO Read

Target Seope
Seope EPC)2 v UE Id: 6

i

Fom 2 Sekoort Seape FPCIT

seikii NI E—

FIFO Read Fikerd FIFC Read Filer 2 Selkctors

Seope Py ror e

T NE ™
++
Id: 7

Data, message 114

Having observed this, you can reduce the read depth of the FIFO Read block
from 3 to 2. This would not change the overall behavior of the model. As a

Examples

positive side effect, the latency time of the FIFO Read block becomes smaller
and therefore the model’s cycle time as well.

Example 3

Now look at a second implementation on the FIFO Write side. Instead of
providing three messages in parallel, you can just write two messages and then
alternate the identifier and data of the second CAN message to be sent.
Because the messages are now sent every millisecond in any case, you need not
provide the Control element, thereby reducing the matrix entering the FIFO
Write block to a size of [2,5]. You can display the model by typing, in the
MATLAB Command Window, either xpccanpcififo3 or xpccan104fifo3.

ﬂxpccanpciﬁh:ﬁ * ;IQIEI

File Edit Wew Simulation Format Tools Help

[1 s1o0 1 8]

hessage 5100 EXT

|

Ver Gat GAN-AC2PCI B
[— FIFG made Tamer Soope
1 e :

Data, message 5100
hilatri Scope BPCIE
Coneatenation FIFC Writa
GaN-AGZ-PGI B —
FIFG: GAN 14 GAN 2 R e S
Standa / Extended o :
Fort: & Sekewar Scope (<PCI1
FIFD Setup A g P2
+i 5100 U uE
Identifier 112 FIFO Read Fiter1 Sekotwr
Tamet Scope
T SekotoR Scope (PGS

— Pamt: 2

u

uE) Talgle‘;.Sgcope

T Identifier 114 GAN-AGE-PCI B1 LA
: FIFO rode

Resd FIFO Read Fiter2

Sekctord

Tamet Scope
v UiE) 'gld:ﬁ "

Scape (<FC)

FIFC Read

Scope (xPGI2

Ta.gle;_szcope Fom Sekecwr Scape (WPG)T
: | w| SOF
114 »’u—ucsﬂi
FIF Fesd Fikerd FIFD Fiead Fitler® ER—

Dats, message 114 Seope (xPGI4 Port 2

ME
Tamget Scope o I
1d: 7

+

This implementation behaves exactly like the first implementation, but shows
how CAN messages to be sent can be constructed dynamically at run-time.

5-43

5 cANI1/0 Support for FIFO

5-44

[pccanpififod * 1ol

File Edit WView Simulation Format Tools Help

Example 4

Look at the situation where the read depth parameter of the FIFO Read block
in the model above is set to 1 instead of 2 or 3. This leads to a receive FIFO
overflow when the execution time reaches 256 milliseconds. Here, for example,
the execution should be stopped if the overflow occurs. This can do this easily
by evaluating the lost message counter value leaving the status output port of
the FIFO Read block. You can display the model by typing, in the MATLAB
Command Window, either xpccanpcififo4 or xpccani104fifo4.

11 5100 1 8]

Message 5100 EXT

f

VenGat CANAGZPSI B
— FIFO made Ta'gﬁ; wae
1 Wi

pra— Scope (FC)3

Dz, message 5100

CANAGZFSI B Tamget Soape
FIFO: GAN 1 7 GAN 2 U uE 19 Saap

Standamd / Extended

Goncatznation FIFO Write

1
Par 2 Seotor Scape (PG 1

FIFC Setup N
GAN pon GAN-AG2-FGI B » *'551%;
- FIFG mode * v vE

Read

FIFO Read Fiter 1 Seketr]

Identifier 112

FIFO Read

Tamet Scope
u UiE} il

Selector2 Soope (PG5

Seope PC)2

Port: 2

oo L

FIFO Read Fiker2

Identifier 114

Tamet Scope
1d: 3

U UE

ST0, & bytes

Seketor?

Tamet Soape
U uiE) bl

Par:2 Seromr Soape (FGIT

Seope (FGC)

Stop Simulstion

ik N s EE—

FIFO Read Fiterd FIFO Read Fiter3 Selectors
Ciata, message 114 5c0pe (xPG) 4 Port 2
T NE
Tamet Scope *+ -—
T

Example 5

Consider a different handling of the receive FIFO overflow: If the receive FIFO
level reaches the value of 200, the receive FIFO should be reset to delete all
currently stored events. The application execution has to continue normally.
For this, you need to add two new driver blocks to the model, which are used to
read the receive FIFO level and then reset it. You can display the model by
typing, in the MATLAB Command Window, either xpccanpcififo5 or
xpccan104fifob.

Examples

E!upccanpcifiqu &

File Edit View Simulation Format Tools Help

=l

11 slo0 1 8]

hessage 5100 EXT

|

Data, message 5100

GAN-AGEZ-PG| B1
FIFO: GAN 1/ GAN 2
Standam / Extended

[£8]

FIFS Setp AN port

Identifier 114

H

57D, & bytes

Data, message 112

-

Switchd

Data, messsge 11450ape (RFG14

Tamet Scope
1d:7

Ven Cat
—

Iilstric
Goneatenation

CAaM-ACE-PCIE1
FIFD mode

CAN-ACZ-PCIB1
FIFC mode
RCV FIFO kvel

FIFG Read RCY Level

Seape FPC)2

Tamet Scope
1d: 2

GAN-AGC2-PGI B1
FIFC made
Read

FIFO Read

FIFO Read Fiter4

Pom 2
+: NE

[y

Tamet Scope
1d: 1

Wiite
Seope (&PG)3
FIFQ Vithe
GAN-AGE-PGI B
FIFO made

Reszt RCY FIFO

FIFC Reset RGY

Sekctor

Tamet Scope
Id: 4

For 2 Scape (FC) 1
™ : 5E1DDFD -h‘U U(E]'i
FIFC Read Fitker 1 Sekeotor]
Port: 2 Sekctor Scope PGS
s v e

FIFC Read Filer2

Fom: 2

Sekctor?

Tamet Seope
voum Sar
Sekectort Soope FFCIT

»| +SDF

+

+: 114

FIFC Read Filer 2

Seketos

Tamet Scope
1d: %

Seape [FG)

Example 6

The next example shows the use of the CAN acceptance filters. First the Read
depth parameter of the FIFO Read block is set to a value of 2. Then the
identifier of the second standard message is changed from 114 to 188. The goal
is to filter any CAN messages with an identifier larger than 127. This means
that the receive FIFO never contain the CAN message with identifier 188. Also,
the FIFO Filter block, filtering CAN message with identifier 114, is changed to
filter the message with identifier 188. To achieve this, the Acceptance Filters
parameter of CAN port 2 in the FIFO Setup block must be set accordingly:

[2047-127, 0, 0, O]

If you rebuild and reexecute the target application, you can see the following:

® Scope with ID 6 shows 0 for all elements of the vector leaving the
corresponding FIFO Filter block. The message with identifier 188 is never

received.

5-45

5 cANI1/0 Support for FIFO

® Scope with ID 3 shows one of the data traces always being zero.

® Scope with ID 7 shows a value of 1, which reflects that the read depth could
be reduced to 1, because only one message per millisecond reaches the
receive FIFO now.

You can display the model by typing, in the MATLAB Command Window,
either xpccanpcififo6 or xpccan104fifo6.

Clxpccanpeififos =10 x|

File Edit View Simulation Format Tools Help

[1 5100 1 5]

Message 5100 EXT

an Gat GAN-AGE-PGI B
:l " = ” Tagaiﬁnpa
Data, message 5100 "

f

r— i Scape BFC13
Gonearnation FIFO Wirite
CANAGR-PGI BY
FIFO: GAN 1 { GAN 2
Standand / Exended GAN-AG2-PGI B1 GAN-ACEPCI B1
11 FIFO mods FIFO made
FIFG Saar et RG FIFO keval Resat ROV FIFO
FIFD Read RGY Level FIFD Reset RCY
Tamet Scope
Identifer 112 Seape (FG)E —
ckectar
Tamget Scope Part: 2 Seope PG 1
42 Y
ot + 5100 —p. -;-{u ucsjbi
E \dentifier 168 FIFG Rread Fiter 1 Sekctor!
Tamet Seope
U UE
CAN-ACZPCI B
FIFC mode —— Sekoo@
STB: & byes Fead Fom 2 Seape WFG1S
| | +5OF -
! met Ssope
FIFO Read + 12 uouE 1d: 3
Data, message 112
FIFC Fead Fiter2 Selkctor e
Tamet Scope
FIFO Read Fiterd vooue
Sakcion
Dana, message 188 S0ape (<FGI4 Por: 2 o 2 ke Scape (<PC)7
SNE g »| +SOF
Tamet Seope - >
FIFD Read Fiter3 Selkecword

5-46

UDP 1/0 Support

xPC Target provides support for the UDP/IP communication protocol. This chapter includes the
following sections:

User Datagram Protocol (UDP) (p. 6-2) Send and receive messages from a target application
using UDP packets.

xPC Target UDP Blocks (p. 6-5) Description of the block parameter fields for the xPC
Target blocks that support UDP communication.

xPC Target UDP Examples (p. 6-13) Communicate between two xPC Target applications,
between a target application and Simulink models or
systems, or between two Simulink models.

6 uor 1/0 Support

6-2

User Datagram Protocol (UDP)

xPC Target supports communication from the target PC to other systems or
devices using User Datagram Protocol (UDP) packets. UDP is a transport
protocol similar to TCP. However, unlike TCP, UDP provides a direct method
to send and receive packets over an IP network. UDP uses this direct method
at the expense of reliability by limiting error checking and recovery. This
section includes the following topics:

* “What Is UDP?” on page 6-2
* “Why UDP?” on page 6-4

What Is UDP?

The User Datagram Protocol (UDP) is a transport protocol layered on top of
the Internet Protocol (IP) and is commonly known as UDP/IP. It is analogous
to TCP/IP. A convenient way to present the details of UDP/IP is by
comparison to TCP/IP as presented below:

¢ Connection Versus Connectionless — T'CP is a connection based protocol,
while UDP is a connectionless protocol. In TCP, the two ends of the
communication link must be connected at all times during the
communication. An application using UDP prepares a packet and sends it
to the receiver’s address without first checking to see if the receiver is ready
to receive a packet. If the receiving end is not ready to receive a packet, the
packet is lost

¢ Stream Versus Packet — TCP is a stream-oriented protocol, while UDP is
a packet-oriented protocol. This means that TCP is considered to be a long
stream of data that is transmitted from one end to the other with another
long stream of data flowing in the other direction. The TCP/IP stack is
responsible for breaking the stream of data into packets and sending those
packets while the stack at the other end is responsible for reassembling the
packets into a data stream using information in the packet headers. UDP,
on the other hand, is a packet-oriented protocol where the application itself
divides the data into packets and sends them to the other end. The other
end does not have to reassemble the data into a stream. Note, some
applications might indeed present the data as a stream when the
underlying protocol is UDP. However, this is the layering of an additional

User Datagram Protocol (UDP)

protocol on top of UDP, and it is not something inherent in the UDP
protocol itself.

¢ TCP Is a Reliable Protocol, While UDP Is Unreliable — The packets that
are sent by TCP contain a unique sequence number. The starting sequence
number is communicated to the other side at the beginning of
communication. Also, the receiver acknowledges each packet, and the
acknowledgment contains the sequence number so that the sender knows
which packet was acknowledged. This implies that any packets lost on the
way can be retransmitted (the sender would know that they did not reach
their destination because it had not received an acknowledgments). Also,
packets that arrive out of sequence can be reassembled in the proper order
by the receiver.

Further, time-outs can be established, because the sender will know (from
the first few packets) how long it takes on average for a packet to be sent
and its acknowledgment received. UDP, on the other hand, simply sends
the packets and does not keep track of them. Thus, if packets arrive out of
sequence, or are lost in transmission, the receiving end (or the sending end)
has no way of knowing.

TCP communication can be compared to a telephone conversation where a
connection is required at all times and two-way streaming data (the words
spoken by each party to the conversation) are exchanged. UDP, on the other
hand, can be compared to sending letters by mail (without a return address).
If the other party is not found, or the letter is lost in transit, it is simply
discarded. The analogy fails, however, when considering the speed of
communication. Both TCP and UDP communication roughly happen at the
same speed, because both use the underlying Internet Protocol (IP) layer.

Note Unreliable is used in the sense of “not guaranteed to succeed” as
opposed to “fails a lot of the time.” In practice, UDP is quite reliable as long
as the receiving socket is active and is processing data as quickly as it
arrives.

6-3

6 uor 1/0 Support

Why UDP?

UDP was chosen as the transport layer for xPC Target precisely because of
its lightweight nature. Since the primary objective of an application running
in the xPC Target framework is real-time, the lightweight nature of UDP
ensures that the real-time application will have a maximum chance of
succeeding in real-time execution. Also, the datagram nature of UDP is ideal
for sending samples of data from the Real-Time Workshop-generated
application. Because TCP is stream oriented, separators between sets of data
must be used for the data to be processed in samples. It is easier to build an
application to deal with unreliable data than it is to decode all of this
information in realtime. If the application is unable to process the data as
quickly as it arrives, the following packets can just be ignored and only the
most recent packet can be used.

Communication can involve a packet made up of any Simulink data type
(double, int8, int32, uints, etc.), or a combination of these. xPC Target
provides blocks for combining various signals into one packet (packing), and
then transmitting it. xPC Target also provides blocks for splitting a packet
(unpacking) into its component signals that can then be used in a Simulink
model. The maximum size of a packet is limited to about 500 bytes.

Note on UDP Communication

The UDP blocks work in the background when the real-time application is not
running. The UDP communication has been set up to have a maximum of two
UDP packets waiting to be read. All subsequent packets are rejected. This
prevents excessive memory usage and minimizes the load on the TCP/IP
stack. Consequently, when any large background task is performed, such as
uploading a screen shot or communicating large pages through the WWW
interface, packet loss might occur. Design applications so that this is not
critical. In other words, the receipt of further packets after the ones that were
lost ensures seamless continuation.

6-4

xPC Target UDP Blocks

xPC Target UDP Blocks

This section includes the following topics:

¢ “UDP Communication Setup” on page 6-5

e “UDP Receive Block” on page 6-6

¢ “UDP Send Block” on page 6-8

¢ “UDP Pack Block” on page 6-9

¢ “UDP Unpack Block” on page 6-10

¢ “Byte Reversal/Change Endianess Block” on page 6-11

UDP Communication Setup

The infrastructure provided in the xPC Target Library for UDP
communication consists mainly of two blocks — a Send block and a Receive
block. These blocks are in the xPC Target Library, available from the
Simulink Library under xPC Target. You can also access them from the
MATLAB command line by typing

xpclib

The blocks are located under the UDP heading in the library. The Send block
takes as input a vector of type uint8, which it sends. This is limited to a
length of about 500 bytes (i.e., a 1 by 500 vector). Similarly, the Receive block
outputs a vector of uint8. To convert arbitrary Simulink data types into this
vector of uint8, a Pack block is provided, while an Unpack block is provided
to convert a vector of uint8s back into arbitrary Simulink data types.

You can have up to 32 UDP blocks in any given model (Send and Receive
blocks combined in any order).

xPC Target includes a Byte Reversal block for communication with
big-endian architecture systems. You do not need this block if you are
communicating between 80x86-based PC systems running either xPC Target
or Microsoft Windows.

6 uor 1/0 Support

6-6

ZLibrary: #pclib/UDP 10l =l
File Edit Wiew Format Help
UDpP
FPack Send
Binany
Fack Send
UDP
Recs e Unpack
Einany
Receaine Unpack
Eyte
rewversa
Byte Reversal

All the blocks are set up to work both from within Simulink and from an
application running under xPC Target. However, you must be careful when
using a Simulink simulation and an xPC Target application to communicate,
or when using two Simulink models. This is because a Simulink model
executes in nonreal time and can be several times faster or slower than real
time. The sample time of the send and receive blocks and the sample time of
the Simulink model must be set so that the communication can proceed

properly.

UDP Receive Block

The Receive block has two output ports. The first port is the output of the
received data as a vector of uint8 while the second one is a flag indicating
whether any new data has been received. This port outputs a value of 1 for
the sample when there is new data and a 0 otherwise. The default behavior
of the Receive block is to keep the previous output when there is no new data.
You can modify this behavior by using the second port to flag when there is
new data.

The block parameters for the Review block are shown below.

xPC Target UDP Blocks

[Z]Block Parameters: Receive x|

—wpcudpbytereceive [mask] [link]

—Parameters
IP addrezs ta receive from [0.0.0.0 far accepting alll:
jooog
|P port bo recedve from;

{25000
Output part width [humber of bytes]:
1

Sample time:
jno1

ok I LCancel | Help |

The IP address to receive from parameter can be left with the default value
0f 0.0.0.0. This accepts all UDP packets from any other computer. If set to a
specific IP address, only packets arriving from that IP address are received.
The IP port to receive from parameter is the port that the block accepts data
from. The other end of the communication sends data to the port specified
here. The output port width is the width of the acceptable packets. You can
obtain this when designing the other side (send side) of the communication.
The sample time can be set to -1 for inheritable sample time, but it is
recommended that this be set to some specific (large) value to eliminate
chances of dropped packets. This is especially true when you are using a small
base sample time.

6-7

6 uor 1/0 Support

6-8

UDP Send Block

The Send block has only one input port, which receives the uint8 vector that
is sent as a UDP packet.

The block parameters for the Send block are shown below.

[Z)Block Parameters: Send d |

—spcudpbytezend [mazk] [link]

—Parameters
IP address to zend to [255. 255,265,285 for broadcast]:

| 255,255, 265,255

Remote IP port to send to:

{25000

|Jze the following local IP part (-1 for automatic port assignment]:
K

Sample time:
jno1

OF. I LCancel | Help | Apply

Specify the IP address to send to and IP port to send to parameters in the
appropriate locations.

Set the Use the following local IP port parameter to -1 (default) to allow the
networking stack to automatically determine the local IP port that is used for
sending. Otherwise, specify a particular port to send a packet from that port.

Set the Sample time parameter to an appropriate value, with the same
considerations as in the Receive block.

xPC Target UDP Blocks

UDP Pack Block

The Pack block is used to convert one or more Simulink signals of varying
data types to a single vector of uint8 as required by the Send block. The data
types for the different signals must be specified as part of the block
parameters, while the sizes of the signals are determined automatically.

Block Parameters: Pack |

wpcaryZbyte [maszk) (link)] |

Parameters
|7 Input part datatypes [cell aray):

I{umt32 "WintTE", "uint32", 'double’, 'double’, 'double’, "Linta")

Biyte alignment; |1 j

Cancel | Help | Apply |

As seen in the figure above, the data types of each of the signals must be
specified as a cell array of strings in the correct order. Once this is done, the
block automatically converts itself to one with the correct number of input
ports. There is always one output port. The supported data types are double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean. The byte
alignment field specifies how the data types are aligned. The possible values
are: 1, 2, 4, and 8. The byte alignment scheme is simple, and ensures that
each element in the list of signals starts on a boundary specified by the
alignment relative to the start of the vector. For example, say the Input port
data types are specified as

{'uint8', 'uint32', 'single', 'int16"', 'double'}

and an alignment of 4 is used. Assume also that all the signals are scalars.
The first signal then starts at byte 0 (this is always true), the second at byte
4, the third at byte 8, the fourth at byte 12, and the fifth at byte 16. Note that
the sizes of the data types used in this example are 1, 4, 4, 2, and 8 bytes
respectively. This implies that there are “holes” of 3 bytes between the first
and second signal and 2 bytes between the fourth and fifth signal.

A byte alignment of 1 means the tightest possible packing. That is, there are
no holes for any combination of signals and data types.

6-9

6 uor 1/0 Support

Note Individual elements of vector/matrix signals are not byte aligned:
only the entire vector/matrix is byte aligned. The individual elements are
tightly packed with respect to the first element.

UDP Unpack Block

This block is the exact analog of the Pack block. It receives a vector of uint8
and outputs various Simulink data types in different sizes.

Block Parameters: Unpack £

I'HpcbyIEEany [mask] (link]

— Parameters
COutput port dimengions [cel aray]:

|{1 1 0LALAAL3ALI3ALD A

Output port datatypes [cell arav]:
I{'uint32', 'uint18', 'uint32", 'double’, 'double’, 'double’, 'uintd'

Buyte alignment: |1 j

ok I Cancel | Help | Apply |

As shown in the figure above, the Output port datatypes field is the same as
the Input port data types field of the matching Pack block. The Pack block
is on the sending side and the Unpack block is on the receiving side in
different models. The Output port dimensions field contains a cell array,
with each element the dimension returned by the size function in MATLAB
of the corresponding signal. This should normally be the same as the
dimensions of the signals feeding into the corresponding Pack block.

6-10

xPC Target UDP Blocks

Note on Byte Alignment

The byte-alignment feature provided in the Pack and Unpack blocks is
primarily intended for interfacing a system running xPC Target to another
system that is running neither Simulink nor xPC Target. For example, the
data on the other end might be in the form of a C struct, which is subject to
the byte-alignment convention of the compiler used. We recommend using a
byte-alignment value of 1 (tightly packed) whenever possible. Of course, this
is easily accomplished when UDP I/O is used to exchange data between two
xPC Target systems or between xPC Target and Simulink.

Even when communication is between xPC Target and a system using a C
struct, the use of compiler pragmas might help to pack the structure tightly.
For example, #pragma pack(1) is common to several compilers. The
byte-alignment blocks are provided for the case when this is not possible.

Byte Reversal/Change Endianess Block

You use the Byte Reversal/Change Endianess block for communication
between an xPC Target system and a system running with a processor that
is big-endian. Processors compatible with the Intel 80x86 family are always
little-endian. For this situation, you should insert a Byte Reversal/Change
Endianess block before the Pack block and just after the Unpack block to
ensure that the values are transmitted properly. The following is the Change
Endianess block.

Block Parameters: Change endianess |

wporeverzeendian [maszk) (link] |

Parameters
|7 Murnber of input parts:

[1
Machine word length: IB-"JtE j

QK I Cancel | Help | Aol |

This block has the following parameters:

Number of input ports — The number of input ports adjusts automatically
to follow this parameter, and the number of outputs is equal to the number of
inputs.

6-11

6 uor 1/0 Support

6-12

Machine word length — Select one of the following machine word lengths to
which to convert the data:

® Byte
* Word
® Double Word

The following is the Byte Reversal block.

Block Parameters: Byte Reversal |
’—Hpcreverseendian [maszk] (link]

Parameters
Murnber of inplits:

QK I Cancel | Help | Apply |

This block has the following parameter:

Number of inputs — The number of input ports adjusts automatically to

follow this parameter, and the number of outputs is equal to the number of
inputs.

xPC Target UDP Examples

xPC Target UDP Examples

This section includes the following topic:

¢ “UDP Example” on page 6-13

UDP Example

This section provides an example of how to set up two-way data exchange
between two xPC Target systems, between xPC Target and Simulink, or
between two Simulink models. When one or both of the systems is running
Simulink in nonrealtime, be sure to set the sample time properly.

Note To use UDP for your xPC Target system, be sure to create a TCP/IP
boot disk and boot the target PC with that boot disk.

The hypothetical models are called udpsendreceiveA and udpsendreceiveB.
Two different sets of data are transferred between these two models, one set
from udpsendreceiveA to udpsendreceiveB and another set in the opposite
direction.

The data to transfer is in the following order:
udpsendreceiveA to udpsendreceiveB
® uint8 (3x3)

® uint16 (1x1)
® double (2x4)

udpsendreceiveB to udpsendreceiveA

® single (4x1)

® double (2x2)

® uint32 (2x2)

® int8 (5x3)

For the purposes of this example, all the inputs are generated using Simulink

Constant blocks that use the MATLAB random number function (rand). The
random numbers are generated by Real-Time Workshop using this function

6-13

6 uor 1/0 Support

at the time of code generation. To generate the vector of uint8 (3x3), use the
MATLAB function

uint8(255 * rand(3,3))

since 255 is the maximum value for an unsigned 8-bit integer. The other
values are generated similarly.

With this setup, construct the send side of udpsendreceiveA.

_iajx]

File Edit Wiew Simulakion Format Tools Help

| Uint8 (255" mnd 3.3 }M}_,

i
. o uoP
‘ uint16(B5536" rand 32768) ILD Pack LinlS (75) yp, Send
Binary
cz

Send

| 2*rand 2,4 -1 10° (rand 600 300 }—L.d"”b'a x4

]

FPack

Note that the width of the UDP packet to be sent is 75 bytes. The parameters
used in the Pack block are Input port datatypes
{'uint8','uint16', 'double'} and Byte Alignment 1.

For the Send block, set the IP Address to send to to 192.168.0.2. This is the
hypothetical address of the system that will run udpsendreceiveA. Set the IP
Port to send to to 25000 (picked arbitrarily). The sample time is set to 0.01.

6-14

xPC Target UDP Examples

Use this information to construct the receive end of udpsendreceiveB.

=TE

File Edit Wiew Simulation Format Tools Help

uinl& [3x3) w3

Terminator]
e uints 1751 #| Unpack NG »3
Rece e -
Binary double Terminato2
double (2x4
Rece e ubks (254) =

Terminato

Unpack
Terminator P

For setting up the Receive block, set IP address to receive from to
192.168.0.2 (the hypothetical address of the system that will run
udpsendreceiveB). The IP port to receive from is set to 25000 (the same
value as set in the Send block in udpsendreceiveA). The Output port width
is set to 75, which is obtained from the output port width of the Pack block in
udpsendreceiveA.

For the Unpack block, Byte Alignment is set to 1 and the Output port
datatypes is set to {'uint8', 'int16', 'double'} from the Pack block in
udpsendreceiveA. The Output port dimensions is set to {[3 3]1,1,[2 4]}
from the dimensions of the inputs to the Pack block in udpsendreceiveA.

Note that in udpsendreceiveB, the second output port of the Receive block is
sent into a terminator. You can use this to determine when a packet has
arrived. The same is true for the outputs of the Unpack block, which in a real
model would be used in the model.

6-15

6 uor 1/0 Support

For constructing the udpsendreceiveB to udpsendreceiveA side of the
communication, follow an analogous procedure. The final udpsendreceiveAis
shown below.

=1

File Edit Wiew Simulation | Format Tools Help

| uint8 255 rand 3,31 }m&ﬁ)_,
1
i P uoP
‘ uint 1655536 rand 32768) lL, Pack uinis [75) uor
c2 Binary
Send
| {2 rand (2,4)1 10" (rand “H00-300) }M}_,
c3
FPack
single i4
Terminatorl
double iZx2
s | Terminato2
HoP uinis (90} P Lnpack arminato
H‘;ﬁ? double uiniz2 22 .EI
Recalse Terminato
inl& (5x3
Terrnin:ulor
Terminatord
Unpack

6-16

xPC Target UDP Examples

The following table lists the parameters in udpsendreceiveA.

Block Parameter Value
Receive IP address 192.168.0.1
IP port 25000
Output port width 80
Sample time 0.01
Unpack Output port dimensions {4,[2 2],[2 2],[5 3]}
Output port data types {'single', 'double’,

‘uint32', 'int8'}

Byte alignment 2

The final udpsendreceiveB model is shown below.

6-17

6 uor 1/0 Support

=

File Edit Yiew Simulation Format Tools Help

uints (3x3) »=

Terminator]

Unpack
Terminator P

single(i2 rand#,1)-17 10" rand*50 257 lﬂﬁl—b

1

| 2 randi2 2)-1" 10 and* 600300)

cz2

| uint32{and 2 2 2°32)

[

| int3 255 and(5,3)-128)

c4

double (2x2) »
uink32 (2x2) »
Send
inls (5x3) »

UDP uinlG (751 B Unpack inlg »=
Receive -
Binary dauble Terminato2

double (2x4
Receive ubls (24) =

Terminato

upP
Send
Binary

uints (50) o
Ll

FPack

FPack

The following table lists the parameters in udpsendreceiveB.

Block Parameter Value
Pack Input port data types {'single', 'double’,
'uint32', 'int8'}
Byte alignment 2
Send IP address 192.168.0.1
IP port 25000
Sample time 0.01

6-18

Aerospace 1/0 Support

xPC Target interfaces the target PC to an ARINC 429 bus using the ARINC 429 blocks provided by
the xPC Target I/O block library. The xPC Target ARINC 429 blocks work with the Condor

Engineering CEI-X20 series boards (http://www.condoreng.com). This chapter includes the
following sections

Condor (p. 7-2) PCI board series that interfaces target PCs to ARINC 429
data buses

7 Aerospace |/O Support

Condor

The commercial and aircraft transport industry uses the ARINC 429 protocol.
The Aerospace ARINC-429 driver library allows xPC Target applications to
connect to an ARINC bus network to send and receive 32-bit words. This
chapter assumes that you are familiar with the ARINC 429 standard.

xPC Target supports the ARINC 429 protocol with the following Condor
boards. These board interface a target PC to an ARINC 429 data bus. These
boards support the PCI bus.

¢ CEI-520

e CEI-520A

xPC Target provides the following driver blocks to support these boards:

¢ “Condor CEI-x20 Initialize” on page 7-3

¢ “Condor CEI-x20 Send” on page 7-4

¢ “Condor CEI-x20 Receive” on page 7-5

Use the following utility blocks to format the data sent to and received from the
CEI-x20 Send and Receive blocks:

* “Encode ARINC 429 Words for Send” on page 7-6
¢ “Decode ARINC 429 Words from Receive” on page 7-9

Condor

Board Characteristics

Board name CEI-520, CEI-520A
Manufacturer Condor

Bus type PCI

Access method Memory mapped

Multiple block instance support No
Multiple board support Yes

Condor CElI-x20 Initialize

Your model must include a CEI-x20 Initialize block for every physical board in
the model. configure your Send and Receive blocks with the appropriate board
ID value from this block to identify the physical board to which they refer. This
block supports up to 16 CEI-x20 boards.

Driver Block Parameters

Board ID — From the list, select from 1 to 16 a unique ID for the CEI board.
Use this ID to identify the board in the associated Send and Receive blocks in
your model.

Wrap each send channel to the corresponding receive channel — Select
this check box to enable the hardware loopback feature. If this block is selected,
each word sent over the output channel n will be received on the input channel
n.

Timer tick length — Specify the length of a timer tick in .25 microsecond
units. The default value is 4000, which results in a tick length of one
millisecond. Time tags (if selected from a Decode ARINC 429 Words from
Receive block) are provided in units of timer ticks. A timer tick specifies the
units in which the time the time tags is expressed. This concept is provided as
a convenience to users.

Sample time — Base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1

7 Aerospace |/O Support

to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

Condor CEI-x20 Send

Use this block to set up one channel of a board to send 32-bit words. The
number of channels varies depending on the board you have.

Driver Block Parameters

Board ID — From the list, select a unique ID from 1 to 16 for the CEI board.
Use the ID previously assigned by the associated Initialize block in the model.
If you are using a corresponding Receive block for this Send block, select the
same board ID as you enter here.

Channel — From the list, select a channel ID. This number varies with the
particular board you are using. Check your board manufacturer documentation
for the number of channels in the board. If you try to select a non-existent
channel, the block returns an error.

Baud rate — From the list, select

® 12.5 Kbits/sec
® 100 Kbits/sec

If you are using a corresponding Receive block, be sure to select the same baud
rate setting for this channel.

Parity — From the list, select

® odd
® none

Note If you are using a corresponding Receive block, be sure to select the
same parity setting for this channel.

7-4

Condor

Sample time — Base sample time or a multiple of the base sample time.

Condor CEI-x20 Receive

Use this block to set up one channel of a board to receive 32-bit words. The
number of channels varies depending on the board you have.

Note The output port of a Receive block is a signal of type double, but the
data on this port is encoded in a nonstandard way. Normally, you should feed
this output port into an ARINC Decode block (which converts the data into
standard double output). You can also feed it into blocks such as MUX blocks
which do not interpret the data. However, before feeding this port into a block
such as an xPC Target Scope block which does interpret the data, you must
first pass it through an ARINC Decode block.

Driver Block Parameters

Board ID — From the list, select a unique ID from 1 to 16 for the CEI board.
Use the ID previously assigned by the associated Initialize block in the model.

If you are using a corresponding Send block, be sure to enter the same board
ID.

Channel — From the list, select a channel number. The number of channels
supported varies with the particular board you are using. Check your board
manufacturer documentation for the number of channels in the board.

Max number of words to return — Enter the maximum number of words to
extract from the hardware receive buffer. This is the maximum number of
words for the selected channel at each sample time.

If you select n, the output port of the block will have a signal width of n+1 and
the first signal element will contain the count of words actually extracted from
the buffer during the current sample time.

Min number of words to return — Enter the minimum number of words to
extract from the hardware receive buffer. This is the minimum number of
words for the selected channel at each sample time.

If the hardware receive buffer does not contain this minimum number of words
for the selected channel during the current sample time, the block extracts no

7-5

7 Aerospace |/O Support

words from the hardware receive buffer. The word count associated with the
output port would then be 0.

Baud rate — From the list, select

® 12.5 Kbits/sec
® 100 Kbits/sec

If you are using a corresponding Send block, be sure to select the same baud
rate setting for this channel.

Parity — From the list, select

® odd
® none

If you are using a corresponding Send block, be sure to select the same parity
setting for this channel.

Sample time — Base sample time or a multiple of the base sample time.

Encode ARINC 429 Words for Send

The output port of an Encode block is a signal of type double. Because the
Encode block encodes the data on this port in a nonstandard way, you must
send this data to one of the following:

® Condor CEI-520A Send block — The ARINC Send block converts the data
into standard double output. This is the block to which you will most likely
send data from the ARINC Encode block.

¢ MUX block — The MUX block does not interpret the data. After the MUX
block, you can send it to an ARINC Send block.

Condor

Driver Block Parameters

Label — Enter a three digit octal number as the label. The label field of each
ARINC word sent over the output port will contain this value.

Data type vector — Enter a vector consisting of values between 0 and 3. These
values specify the data type. The length of this vector determines the widths of
both the input and output ports. The data type determines how the input
double value is converted to a corresponding ARINC value, as follows

Type Interpretation

0 Raw — Cast the input to an unsigned 32-bit integer and output it
as an ARINC word with no further processing.

1 BNR (two’s complement binary notation) — Cast the input as a
signed integer, clamp it to lie in the range representable by a
signed 19-bit binary integer, and pack it into an ARINC word with
the appropriate Sign/Status Matrix (SSM), Source/Destination
Identifier (SDI), and Label data.

2 BCD (binary coded decimal) — Cast the input as a signed integer,
clamp it to lie in the range representable by an ARINC five
character BCD value, and pack it into an ARINC word with the
appropriate SSM, SDI, and Label data.

3 Discretes — Cast the input as an unsigned 32-bit integer and pack
the low order 19 bits of the result into an ARINC word with the
appropriate SSM, SDI, and Label data.

Resolution vector — Enter a vector or scalar value as the resolution vector.
This must be a vector of the same length as the data type vector. Otherwise,

7 Aerospace |/O Support

the scalar value is applied to the length of the data type vector. The block
works with the data types as follows

Type Effect

Raw The block ignores any resolution value. However, you must
still include an associated value in the resolution vector.

BNR The resolution value specifies, in the same units as the input
signal, the value of the least significant bit of the binary data
field. For example, if the associated resolution value is 10 and
the input signal contains the value 1000, the output ARINC
word will contain the binary number 100 in its data field.

A 19-bit signed ARINC binary can represent a range from
-262,144 to 262,143. If the combination of input signal and
resolution produces a value outside this range, the block
clamps it to lie within the range.

BCD The resolution value specifies, in the same units as the input
signal, the value of the least significant digit of the BCD data
field. For example, if the associated resolution is 10 and the
input signal contains the value 1000, the output ARINC word
will contain the number 100 in its data field, encoded in BCD.

The range representable as an ARINC BCD value is -79,999
to 79,999. If the combination of input signal and resolution
produces a value outside this range, the block clamps it to lie
within the range.

Discretes The block ignores any resolution value. However, you must
still include an associated value in the resolution vector.

SDI vector — Enter a vector or scalar value as the SDI vector. This must be a
vector of the same length as the data type vector. Otherwise, the scalar value
is applied to the length of the data type vector.

7-8

Condor

This block interprets the SDI vector values as follows:

Type Effect

Raw The block ignores any resolution value. However, you must
still include an associated value in the resolution vector.

BNR, BCD, If the SDI element is in the range 0 to 3, the block sets the

Discretes SDI field of the corresponding output word to that value. If
an SDI element has a value of -1, the block performs no SDI
processing on the corresponding output word.

SSM vector — Enter a vector or scalar value as the SDI vector. This must be
a vector of the same length as the data type vector. Otherwise, the scalar
value is applied to the length of the data type vector.

If the SSM element is in the range 0 to 3, the block sets the SSM field of the
corresponding output word to that value. If an SSM element has a value of -1,
the block performs no SSM processing on the corresponding output word. Note
that the meaning of a given SSM value differs depending on the data type of
the ARINC word.

Decode ARINC 429 Words from Receive

The input port of a Decode block is a signal of type double. Because the Decode
block interprets the data on this port in a nonstandard way, you can send the
data to this port from one of the following:

® Condor CEI-520A Receive block — The Condor CEI-520A Receive block
outputs its data into standard double output. This is the block from which
you will most likely send data to the ARINC Decode block.

¢ ARINC Encode block — The output port of an Encode block is a signal of type
double.

The output port of a Decode block is in standard double format.

The input to this block should be a CEI-x20 Receive block. The Decode block
input port width will automatically adapt to that of the source block. connected
width of the input port of the block adjusts to the block it is connected to.

7 Aerospace |/O Support

Driver Block Parameters

Label — Enter a three digit octal number. If the label of an input word does
not match this label, the block completely ignores the word and does not apply
the Synec mask and Syne value parameters.

Data type vector — Enter a vector consisting of values between 0 and 3. These
values specify the data type. The length of this vector determines how many
ARINC words the block will attempt to decode and output each sample time.
The elements of the vector determine how the input double value is converted
to a corresponding double output value, as follows

Type Interpretation

0 Raw — Convert the entire (unsigned) 32 bit input word to double.

1 BNR — For each word, convert bits 10-28 from signed binary
format to double.

2 BCD — For each word, convert bits 10-28 from BCD format to
double, using the sign data in the SSM.

3 Discretes — For each word, extract bits 10-28 and return them as
a double.

The elements of the data type vector determine how the input ARINC value is
converted to a corresponding double output. The following describes how this
block performs the conversion. For the purposes of this description, n denotes
the length of the data type vector.

¢ The output width is one of the following, depending on your time tag
selection

= 2n + 1 — This is the output width if you select the Provide time tags
check box. The width consists of a count element, followed by n data
elements, followed by n time tag elements.

= n + 1 — This is the output width if you do not select the Provide time tags
check box. The width consists of a count element followed by n data
elements.

The count element indicates how many valid messages the block has decoded
during the current sample time. The count element has a nonzero value if a

7-10

Condor

at least one message on the data element is currently valid, and zero
otherwise. If the count element has a value greater than one, the block
asserts only the most recent valid message on the output port.

¢ The Decode block buffers its input internally. It updates its output port only
during sample times when it has successfully assembled at least one
complete message of length n.

Note that more than one complete message might be assembled during one
sample time. The Decode block successively overwrites these messages such
that only the most recent message is on the output port.

Resolution vector — Enter a vector or scalar value as the resolution vector.
This must be a vector of the same length as the data type vector. Otherwise,
the scalar value is applied to the length of the data type vector. The block
works with the data types as follows

Type Effect

Raw The block ignores any resolution value. However, you must
still include an associated value in the resolution vector.

BNR, BCD The resolution value specifies, in output port units, the value
of the least significant bit of the data field. For example, if
the resolution is 10 and the input data contains the value
100, the output signal will contain the number 1000.

Discretes The block ignores any resolution value. However, you must
still include an associated value in the resolution vector.

Sync mask — Enter a value, in hexadecimal, to specify which bits (if any) of
the input words are the sync bits. (A sync bit lets you specify, using other
parameters, when a message should begin.) The Decode block will examine
these bits to look for the start of the next message. A message might be a string
of one or more words. For example, a sync mask value of 0x300 equals
1100000000 in binary. This value selects the SDI bits (bits 9 and 10) as the
sync bits. This functionality works in conjunction with the Syne value
parameter.

If the sync mask is 0x0, no sync logic is used. In this case, the next word always
begins a new message.

7-11

7 Aerospace |/O Support

7-12

Syne value(s) — This parameter specifies the sync logic for the block. Enter
one hex value to specify oneSync, two hex values separated by a space for
twoSync logic. For example, the sync value

0x100

selects oneSync logic. The sync value

0x100 0x200

selects twoSync logic. You can enter an 32-bit value.

The sync value takes into account the value of the sync mask, as follows:

® Assume the following

sync mask = 0x300
sync value = 0x100

When looking for the beginning of a new message, the block ANDs each input
word with the sync mask 0x300 and compares the result with 0x100 and
0x300. When it finds a match, the block stops this search and begins a new
search, looking for the next message. The block decodes the next n words
starting at this point.

Assume the following
sync mask = 0x300
sync value = 0x100 0x200

When looking for the beginning of a new message, the block ANDs each input
word with 0x300 and compares the result to 0x100 and 0x300. When the
block finds a match, and when the next input word, when ANDed with 0x300,
equals 0x200 and 0x300, this second word begins a new message.

Once the block locates the beginning of a message, it uses the next n input

words with the appropriate label to assemble the next output message. The
block does not use sync logic until it is time to begin the assembly of a new

message.

Provide time tags — Select this check box to enable an output port of width
2n + 1, with time tag data in the last n elements.

Access 10

This chapter describes I/0 boards supported by xPC Target (http://www.accesio.com).

WDG-CSM (p. 8-2) The WDG-CSM is a watchdog timer used to detect
computer failure.

8 Access 1O

WDG-CSM

The WDG-CSM is a watchdog timer used to detect computer failure. You can
program this watchdog to reboot the system when a programmable timeout
occurs. The timeout interval can range from 20 microseconds to 400 seconds.

xPC Target supports this board with one driver block:
* “WDG-CSM Watchdog Timer” on page 8-2

Board Characteristics

Board name WDG-CSM
Manufacturer Access 10
Bus type ISA

Access method I/0 mapped

Multiple block instance support No
Multiple board support Yes

WDG-CSM Watchdog Timer

Driver Block Parameters
Watchdog Time [s] (20us-4800s) — Enter a timeout value in seconds.

Show reset port — Select this check box to enable an input port on the driver
block. A signal connected to this port resets the watchdog.

Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

ADDI-DATA

This chapter describes I/0 boards supported by xPC Target (http://www.addi-data.de).

APCI-1710 (p. 9-2) The APCI-1710 is a general-purpose counting board with
four function modules.
PA-1700 (p. 9-5) The PA1700 is a counter board with three 24-bit counters

for connecting three incremental encoders.

Q ADDIDATA

APCI-1710

The APCI-1710 is a general-purpose counting board with four function
modules.

xPC Target supports this board with this driver block:
e “APCI-1710 Incremental Encoder” on page 9-2

Note, xPC Target only supports the 32-bit mode for this board. As a result, each
port only supports a single encoder.

Board Characteristics

Board name APCI-1710
Manufacturer ADDI-DATA
Bus type PCI

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

APCI-1710 Incremental Encoder

A function module is individually programmable with different firmware. You
do this by using the ADDI-DATA utility SET1710. This driver supports the
APCI-1710 if the specified function module is programmed with the
incremental encoder firmware.

If the board and its specific module are not programmed with the incremental
encoder firmware, you must invoke SET1710 before the driver can be used
within an xPC Target application. In this case, plug the board into a PC
running Microsoft Windows and install the board as indicated in the
ADDI-DATA user manual. Use SET1710 to download the incremental encoder
firmware onto the appropriate function module. After this step, you can remove
the board and plug it into the target PC.

This driver block has two block outputs. The values output depend on the value
of the Type of Evaluation parameter. See below for further information. Refer

APCI-1710

to the APCI-1710-manual for information on how to connect the encoders to the
board.

Driver Block Parameters

Function module — From the list select 1, 2, 3, or 4. This field specifies the
function module (counter) to be used for this block. It must be programmed
with the incremental encoder firmware. Two blocks for the same board cannot
have the same module (channel) specified.

Type of evaluation — From the list select the type of counter evaluation as
either

® Virtual Absolute — Gets the counter value as an absolute value after the
reference point of the encoder has been reached for the first time. The first
output of the block outputs the absolute angle of the connected encoder in
radians. As long as the reference point has not been reached for the first
time, the second block output is zero. If the reference point is reached for the
first time, and only for the first time, the corresponding counter is reset to
zero and the second output goes to 1. From then on the output 1 outputs an
absolute angle even if the encoder is turned multiple times. The second
output can be used for controlling or switching different Simulink
submodels.

® Reset and Index Output Up-Dating — Gets the counter value in the range
of 0..2%pi or —pi..+pi where the counter is reset every time the reference point
is reached. The first output of the block outputs the angle of the connected
encoder in radian. As long as the reference point has not been reached for the
first time, the second block output is zero. Every time the reference point is
reached, the counter is reset to zero and, depending on the direction of the
encoder at this event, the output value is either incremented or decremented
by the value 1. In other words the second output outputs the actual number
of turns n because the reference point has been reached for the first time. If
the second output is multiplied by 2*pi and added to the value of the first
output, you get an absolute multiturn angle, even if the counter is reset
periodically.

Mode — From the list, choose single, double, or quadruple. This parameter
specifies the phase detection mode, that is, how many phase changes of the
specified module are detected (see the APC1-1710 manual).

9-3

Q ADDIDATA

Hysteresis — From the list choose either off or on. The Hysteresis parameter
specifies whether a counter should skip a tick if the direction changes (see the
APC1-1700 manual).

Resolution — Specifies the resolution of the connected incremental encoder for
one revolution.

Sample time — Model base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

94

PA-1700

PA-1700

The PA1700 is a counter board with three 24-bit counters for connecting three
incremental encoders.

xPC Target supports this board with this driver block:
¢ “PA-1700 Incremental Encoder” on page 9-5

Board Characteristics

Board name PA1700
Manufacturer ADDI-DATA
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PA-1700 Incremental Encoder

The driver block has two block outputs. The first outputs the absolute angle in
radians. The second output is zero as long as the index or the reference point
was not reached by rotating the encoder. If it is reached for the first time, and
only for the first time, the corresponding counter is reset to zero and this output
goes to 1. From then on the output 1 outputs an absolute angle even if the
encoder is turned multiple times. The second output can be used for controlling
or switching different Simulink submodels.

Driver Block Parameters

Counter — From the list select 1, 2, or 3. This parameter specifies the counter
used for this block. Two blocks for the same board (same base address) cannot
have the same counter (channel) specified.

Mode — From the list select single, double, or quadruple. This parameter
specifies the phase detection mode, that is, how many phase changes of the
specified counter are detected (see the PA1700 manual).

Q ADDIDATA

Hysteresis — From the list choose either off or on. The Hysteresis parameter
specifies whether a counter should skip a tick if the direction changes (see the
PA1700 manual).

Resolution — Specifies the resolution of the connected incremental encoder for
one revolution.

Sample time — Model base sample time or a multiple of the base sample time.

Base Address — Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300
The following jumpers must be set according to the parameters entered above:

e Jumper J16, 17, and 18 must be set to position 1-2.

¢ Jumper J13, 14, and 15 must be set to position 1-2.

e Jumper J1, 5, and 9 must be set according to the connected encoders.
e Jumper J2, 6, and 10 must be set according to the connected encoders.
e Jumper J3, 7, and 11 must be set according to the connected encoders.
e Jumper J4, 8, and 12 must be set according to the connected encoders.

For information on how to connect the encoders to the board, see the PA1700
manual.

If you want to use the 5 V power supply from the board (PIN20), you must
insert Fuse 1 on the board. Refer to the PA1700 manual.

9-6

Adlink

This chapter describes the Adlink boards supported by xPC Target (http://www.adlinktech.com).

Adlink PCI-8133 (p. 10-2) Three-phase encoder counter and PWM output board

Adlink PCI-6208A (p. 10-5) Digital to analog converter board with four bits of digital
input and four bits of digital output lines.

10 Adink

Adlink PCI-8133

10-2

The Adlink PCI-8133 is a three-phase encoder counter and PWM output board.
This board has three 16-bit quadruple AB phase encoder counters, 12-bit PWM
resolution, and eight general-purpose digital input and output lines.

xPC Target supports the three-phase PWM generation section of the board
with this driver block:

¢ “PCI-8133 3-Phase PWM” on page 10-2

Board Characteristics

Board name PCI-8133
Manufacturer Adlink

Bus type PCI

Access method I/0 mapped

Multiple block instance support No
Multiple board support No

PCI-8133 3-Phase PWM

Scaling Output to Input

Hardware Output Block Input Data Type Scaling
TTL Duty cycle: double Oto1l
Of Note

® There is one input port for each phase (channel). You can select and order
each phase (channel) individually.

¢ Hardware outputs are open collector lines that can draw a maximum current
of 20 mA.

® To enable PWM generation, ensure that the OENA pin (pin 34 of connector
CN1) is connected to pin VCC (pin 19 of connector CN1).

Adlink PCI-8

133

¢ Although the duty cycle inputs are of type double, the duty cycle resolution
is finite. The value of the Factor n determining square wave period
parameter defines the duty cycle resolution. For example, if the value of
Factor n determining square wave period is 1000 for an output period of
200 microseconds, the duty cycle can be adapted with a resolution of 1000
steps (from 0...1), in relation to the value of Factor n determining square
wave period. The duty cycle resolution lowers by a smaller output period (or
higher output frequency).

Driver Block Parameters

Factor n determining square wave period — Defines the period (duration)
of the square wave, where the square wave is the sum of the on and off part.
This parameter is also called the n factor. The n factor must be in the range
from 1 to 65535. The resulting period is calculated as

T=n*200 nanoseconds

Factor m determining dead time duration — Defines the duration of the
dead time that is needed if the output lines drive transistor bridges. This
parameter is also called the m factor. The m factor must be in the range from 1
to 255. The resulting duration is calculated as

Tdt= 750 nanoseconds*(m+1)

Channel vector — Defines the channel (phase) that is active. Enter a vector of
numbers between 1 and 3 to This parameter also specifies the input port of the
block is connected to the channel. Channel value 1 represents phase U, value

2 represents phase V, and value 3 represents phase W. The maximum length

of the vector is 3.

Reset vector — Enter a scalar or a vector that is the same length and channel
order as the Channel vector value. Enter 1 or 0. A value of 1 resets the output.
A value of 0 retains the last value of the duty cycle when the target application
stops. You can specify a different reset vector value for each channel.

Initial duty cycle vector — Enter a scalar or a vector that is the same length
and channel order as the Channel vector value. Enter 1 or 0. A value of 1 sets
the reset duty cycle for the corresponding channel if the Reset vector for that
channel is also 1.

Sample time — Base sample time or a multiple of the base sample time.

10-3

10 Adink

10-4

PCI slot — If only one board of this type is physically present in the target PC,
enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

Adlink PCI-6208A

Adlink PCI-6208A

The Adlink PCI-6208A is a digital to analog converter board. This board has
four bits of digital input and four bits of digital output lines.

xPC Target supports this board with the following driver blocks:

¢ “PCI-6208A Analog Output” on page 10-5
¢ “PCI-6208A Digital Input” on page 10-7
* “PCI-6208A Digital Output” on page 10-8

Board Characteristics

Board name PCI-6208A
Manufacturer Adlink

Bus type PCI

Access method I/O mapped

Multiple block instance support No
Multiple board support Yes

PCI-6208A Analog Output

Scaling Output to Input

Hardware Output Block Input Data Type Scaling
ma Double 1

Channel vector — Enter a vector of numbers to specify the output channels.
For example, to use the first and second analog output (D/A) channels enter

[1, 2]

The channel numbers can occur in any order. Number the channels beginning
with 1 even though the board manufacturer numbers them beginning with 0.
The maximum allowable channel number is 4.

10-5

10 Adink

10-6

Range — From the list, choose

® (0 to 20 ma
5 to 25 ma
® 4 to 20 ma

Signal input to the block is in milliamps (ma). The output voltage maximum is
10 volts. If the resistance is too large to get the chosen current, the voltage
measured across the output load will saturate.

For example, assume an input sine wave with:
Input = 10*sin(omega*t) + 10

If you set the range to 0 to 20 ma, the current should oscillate from 0 to 20 ma
at omega radians per second. The current will only reach 20 ma if the load
resistance is less than or equal to 500 ohms. If the load resistance is 1000 ohms,
the maximum current that 10 volts can drive is only 10 ma. The top half of the
sine wave will be clipped off.

Note the following:

¢ The scaling in this block is correct for the current output ports, not the
voltage ones.

¢ This block limits output to positive values only. This is in response to the
board hardware manual caution that states driving a negative voltage from
the D/A converter to the voltage to current output board might cause damage
to the current output.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running. For example, if Channel
vectoris [1 2] and the Reset vector is [1], the action taken will be the same
as if Reset vector was set to [1 1]. Both channels will be reset to their initial
values when model execution is stopped.

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between

Adlink PCI-6208A

the time the model is downloaded and the time it is started. When model
execution is stopped, the corresponding position in Reset vector is checked.
Depending on that value, the channel is either reset to the initial value or
remains at the last value attained while the model was running. For example,
assume that Channel vectoris [1 2], Reset vector is [1 0], and Initial
value vector is [2.3 5.6]. On initial download, channel 1 is set to 2.3 ma and
channel 2 to 5.6 ma. When the model is stopped, channel 1 resets to 2.3 ma and
channel 2 remains at the last value attained.

Sample time — Base sample time or a multiple of the base sample time.

PCI slot — If only one board of this type is physically present in the target PC,
enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber].To determine the bus
number and the PCI slot number, type

getxpcpci

PCI-6208A Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low =0
TTL high =1

Channel vector — Enter a vector of numbers to specify the digital input port
ports.

For example, to use the first and second digital input channels enter

(1, 2]

10-7

10 Adink

10-8

The channel numbers can occur in any order. Number the channels beginning
with 1 even though the board manufacturer numbers them beginning with 0.
The maximum allowable channel number is 4. Each input can be listed at most
once in this vector.

Sample time — Base sample time or a multiple of the base sample time.

PCI slot — If only one board of this type is physically present in the target PC,
enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

PCI-6208A Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 = TTL high

Channel vector — Enter a vector of numbers to specify the digital output
channels.

For example, to use the first and second analog digital output channels enter
[1, 2]

The channel numbers can occur in any order. Number the channels beginning
with 1 even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number is 8.

Adlink PCI-6208A

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running. For example, if Channel
vector is [1 2] and the Reset vector is [1], the action taken will be the same
as if Reset vector was set to [1 1]. Both channels will be reset to their initial
values when model execution is stopped.

Initial value vector — The initial value vector contains the initial voltage
values for the digital output channels. Enter a scalar or a vector that is the
same length as the channel vector. If you specify a scalar value, that value is
the initial value for all channels. The channels are set to the initial values
between the time the model is downloaded and the time it is started. When
model execution is stopped, the corresponding position in Reset vector is
checked. Depending on that value, the channel is either reset to the initial
value or remains at the last value attained while the model was running. For
example, assume that Channel vectoris [1 2], Reset vectoris [1 0], and
Initial value vector is [0 1]. On initial download, channel 1 is set to off and
channel 2 to on. When the model is stopped, channel 1 resets to off and channel
2 remains at the last value attained.

If the Initial value vector value is greater than 0.5, the corresponding digital
output port is turned on, otherwise it is turned off.

Sample time — Base sample time or a multiple of the base sample time.

PCI slot — If only one board of this type is physically present in the target PC,
enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

10-9

10 Adink

10-10

Advantech

This chapter describes I/0 boards supported by xPC Target (http://www.advantech.com)

PCL-1800 (p. 11-3) 16 single or eight differential analog channels, two analog
output D/A channels, and 16 digital input lines and 16
digital output lines

PCL-711B (p. 11-8) Eight single-ended analog input channels, one analog
output channel, and 16 digital input lines and 16 digital
output lines

PCL-726 (p. 11-12) Six independent analog output D/A channels, and 16
digital input lines and 16 digital output lines

PCL-727 (p. 11-16) 12 independent analog output D/A channels, 16 digital
input lines and 16 digital output lines

PCL-728 (p. 11-20) Two independent analog output D/A channels

PCL-812 (p. 11-22) 16 single ended analog input channels, two analog output

D/A channels, and 16 digital input lines and 16 digital
output lines

PCL-812PG (p. 11-27) 16 single or eight differential analog channels, two analog
output D/A channels, and 16 digital input lines and 16
digital output lines

PCL-818 (p. 11-32) 16 single or eight differential analog channels, two analog
output D/A channels, and 16 digital input lines and 16
digital output lines

PCL-818H (p. 11-38) 16 single or eight differential analog channels, one analog
output D/A channel, and 16 digital input lines and 16
digital output lines

1 1 Advantech

PCL-818HD (p. 11-43)

PCL-818HG (p. 11-48)

PCL-818L (p. 11-53)

11-2

16 single or eight differential analog channels, one analog
output D/A channel, and 16 digital input lines and 16
digital output lines

16 single or eight differential analog input (A/D)
channels, one analog output (D/A) channel, and 16 digital
input lines and 16 digital output lines

16 single or eight differential analog input (A/D)
channels, one analog output (D/A) channel, and 16 digital
input lines and 16 digital output lines

PCL-1800

PCL-1800

The PCL-1800 is an I/O board with 16 single or eight differential analog
channels (12-bit) with a maximum sample rate of 330 KHz, two analog output
D/A channels (12-bit), and 16 digital input lines and 16 digital output lines.

xPC Target supports this board with these driver blocks:
¢ “PCL-1800 Analog Input (A/D)” on page 11-3

¢ “PCL-1800 Analog Output (D/A)” on page 11-5

e “PCL-1800 Digital Input” on page 11-6

¢ “PCL-1800 Digital Output” on page 11-7

Board Characteristics

Board Name PCL-1800
Manufacturer Advantech
Bus Type ISA

Access Method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-1800 Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

11-3

1 1 Advantech

114

Driver Block Parameters

Channel vector — If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select differential
(Input coupling parameter set to differential), enter numbers between 1
and 8. For example, to use the first and second analog output (A/D) channels,
enter

[1,2]
Number the channels beginning with 1 even if the board manufacturer starts

the numbering of the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0to 10 10

-5 to +5 -5 0 to +5 5

-2.5 to +2.5 -2.5 0 to +2.5 2.5

-1.25 to +1.25 -1.25 0to+1.25 1.25

-.625 to +.625 -0.625

For example, if the first channel is -10 to +10 volts and the second channel is 0
to 5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings on the board.

Input coupling — From the list, select one from the following list of input
modes:

® Single-ended channels (16 channels)
e differential channels (8 channels)

PCL-1800

Your choice must correspond to the MUX switch setting on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-1800 Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling
volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code

0 to +10 10 0 to +5 5

11-5

1 1 Advantech

11-6

For example, if the first channel is -10 to +10 volts and the second channel is 0
to 5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

PCL-1800 Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

PCL-1800

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-1800 Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-7

1 1 Advantech

11-8

PCL-711B

The PCL-711B is an I/O board with eight single-ended analog input channels
(12-bit) with a maximum sample rate of 25 kHz, one analog output channel
(12-bit), and 16 digital input lines and 16 digital output lines.

xPC Target supports this board with four driver blocks:
¢ “PCL-711B Analog Input (A/D)” on page 11-8

¢ “PCL-711B Analog Output (D/A)” on page 11-10

® “PCL-711B Digital Input” on page 11-10

¢ “PCL-711B Digital Output” on page 11-11

Board Characteristics

Board name PCL-711B
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-711B Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8. For example, to use the
first and second analog output (A/D) channels, enter

[1,2]

PCL/

118

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

-10 to +10 -10
-5to +5 -5
-2.5to +2.5 -2.5
-1.25 to +1.25 -1.25

-.625 to +.625 -0.625

For example, if the first channel is -10 to +10 volts, and the second channel is
-2.5t0 2.5 volts, enter

[-10,-2.5]
The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-9

1 1 Advantech

PCL-711B Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Range — From the list, choose either 0-10V or 0-5V.

The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-711B Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines used.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]

11-10

PCL711B

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-711B Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital outputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-11

1 1 Advantech

PCL-726

The PCL-726 is an I/O board with, six independent analog output D/A channels
(12-bit), 16 digital input lines and 16 digital output lines.

xPC Target supports this board with these driver blocks:

e “PCL-726 Analog Output (D/A)” on page 11-12
¢ “PCL-726 Digital Input” on page 11-14
® “PCL-726 Digital Output” on page 11-15

Board Characteristics

Board name PCL-726
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-726 Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

11-12

PCL726

Driver Block Parameter

Channel vector — Enter numbers between 1 and 6. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

0 to +10 10
0 to +5 5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-13

1 1 Advantech

11-14

PCL-726 Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL726

PCL-726 Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-15

1 1 Advantech

PCL-727

11-16

The PCL-727 is an I/O board with 12 independent analog output D/A channels
(12-bit), 16 digital input lines and 16 digital output lines.

xPC Target supports this board with these driver blocks:

e “PCL-727 Analog Output (D/A)” on page 11-16
e “PCL-727 Digital Input” on page 11-18
® “PCL-727 Digital Output” on page 11-19

Board Characteristics

Board name PCL-727
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-727 Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 12. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]

PCL727

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

-5to +5 -5
0to+5 5
0to 10 10

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-17

1 1 Advantech

11-18

PCL-727 Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL727

PCL-727 Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-19

1 1 Advantech

PCL-728

11-20

The PCL-728 is an I/O board with two independent analog output D/A channels
(12-bit).

xPC Target supports this board with this driver block:
® “PCL-728 Analog Output (D/A)” on page 11-20

Board Characteristics

Board name PCL-728
Manufacturer Advantech
Bus Type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-728 Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]

Channel numbers begin with 1 even if the board manufacturer starts
numbering channels with 0.

PCL/28

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

-10 to +10 -10
-5 to +5 -5
0to 10 10
0 to +5 5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-21

1 1 Advantech

PCL-812

11-22

The PCL-812 is an I/O board with 16 single-ended analog input channels
(12-bit) with a maximum sample rate of 30 KHz, two analog output D/A
channels (12-bit), and 16 digital input lines and 16 digital output lines.

xPC Target supports this board with these driver blocks:
® “PCL-812 Analog Input (A/D)” on page 11-22

® “PCL-812 Analog Output (D/A)” on page 11-24

¢ “PCL-812 Digital Input” on page 11-25

¢ “PCL-812 Digital Output” on page 11-26

Board Characteristics

Board name PCL-812
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-812 Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. For example, to use the
first and second analog input (A/D) channels, enter

[1,2]

PCL812

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

-10 to +10 -10
-5to +5 -5
-2.0 to +2.0 -2.0
-1.0 to +1.0 -1.25

For example, if the first channel is -10 to +10 volts, and the second channel is
-5 to 5 volts, enter

[-10,-5]
The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-23

1 1 Advantech

11-24

PCL-812 Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input range Range code

0 to +5V 5

For example, if both channels are 0 to +5 volts, enter

[5,5]
The range settings must correspond to the DIP switch settings on the board.

Sample time — Base sample time or a multiple of the base sample time.

PCL812

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-812 Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines used.

For example, to use the first eight digital inputs, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-25

1 1 Advantech

11-26

PCL-812 Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital outputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-812PG

PCL-812PG

The PCL-812PG is an I/O board with 16 single or eight differential analog
channels (12-bit) with a maximum sample rate of 30 KHz, two analog output
D/A channels (12-bit), and 16 digital input lines and 16 digital output lines.

xPC Target supports this board with these driver blocks:
¢ “PCL-812PG Analog Input (A/D)” on page 11-27

¢ “PCL-812PG Analog Output (D/A)” on page 11-29

¢ “PCL-812PG Digital Input” on page 11-30

¢ “PCL-812PG Digital Output” on page 11-31

Board Characteristics

Board name PCL-812PG
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-812PG Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. For example, to use the
first and second analog input (A/D) channels, enter

[1,2]

11-27

1 1 Advantech

11-28

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

-10 to +10 -10
-5 to +5 -5
-2.5t0 +2.5 -2.5
-1.25 to +1.25 -1.25

-.625 to +.625 -0.625

0to 10 10
0to+5 5

0 to +2.5 2.5
0 to +1.25 1.25

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-812PG

PCL-812PG Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range Range Code
-10to +10V -10
5to+5V -5

0to10V 10

Oto+5V 5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

11-29

1 1 Advantech

The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-812PG Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines used.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-30

PCL-812PG

PCL-812PG Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital outputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-31

1 1 Advantech

PCL-818

11-32

The PCL-818 is an I/O board with 16 single or eight differential analog
channels (12-bit) with a maximum sample rate of 100 KHz, two analog output
D/A channels (12-bit), and 16 digital input lines and 16 digital output lines.

xPC Target supports this board with these driver blocks:
¢ “PCL-818 Analog Input (A/D)” on page 11-32

® “PCL-818 Analog Output (D/A)” on page 11-34

* “PCL-818 Digital Input” on page 11-35

¢ “PCL-818 Digital Output” on page 11-36

Board Characteristics

Board name PCL-818
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-818 Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select differential
(Input coupling parameter set to differential), enter numbers between 1

PCL-818

and 8. For example, to use the first and second analog output (A/D) channels,
enter

[1,2]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

-10 to +10 -10
-5 to +5 -5
-2.5t0+2.5 -2.5
-1.25 to +1.25 -1.25

-.625 to +.625 -0.625

0to 10 10
0 to +5 5

0 to +2.5 2.5
0to +1.25 1.25

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings on the board.

Input coupling — From the list, select one from the following list of input
modes:

11-33

1 1 Advantech

11-34

® Single-ended channels (16 channels)

e differential channels (8 channels)

Your choice must correspond to the MUX switch setting on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818 Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

PCL-818

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range Range Code
-10 to +10V -10
5to+5V -5

0to10V 10

Oto+5V 5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818 Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines used.

11-35

1 1 Advantech

11-36

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818 Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital outputs, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

PCL-818

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-37

1 1 Advantech

PCL-818H

11-38

The PCL-818H is an I/O board with 16 single or eight differential analog
channels (12-bit) with a maximum sample rate of 100 KHz, one analog output
D/A channel (12-bit), and 16 digital input lines and 16 digital output lines.

xPC Target supports this board with these driver blocks:
¢ “PCL-818H Analog Input (A/D)” on page 11-38

¢ “PCL-818H Analog Output (D/A)” on page 11-40

¢ “PCL-818H Digital Input” on page 11-41

¢ “PCL-818H Digital Output” on page 11-42

Board Characteristics

Board name PCL-818H
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-818H Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select differential
(Input coupling parameter set to differential), enter numbers between 1

PCL-818H

and 8. For example, to use the first and second analog output (A/D) channels,
enter

[1,2]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

-10 to +10 -10
-5 to +5 -5
-2.5t0+2.5 -2.5
-1.25 to +1.25 -1.25

-.625 to +.625 -0.625

0to 10 10
0 to +5 5

0 to +2.5 2.5
0to +1.25 1.25

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings on the board.

Input coupling — From the list, select one from the following list of input
modes:

11-39

1 1 Advantech

11-40

® Single-ended channels (16 channels)
e differential channels (8 channels)

This choice must correspond to the MUX switch setting on the board.
Sample time —Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818H Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter
Range — From the list, choose either 0-10V or 0-5V.

The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818H

PCL-818H Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-41

1 1 Advantech

11-42

PCL-818H Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818HD

PCL-818HD

The PCL-818HD is an I/O board with 16 single or eight differential analog
channels (12-bit) with a maximum sample rate of 100 KHz, one analog output
D/A channels (12-bit), and 16 digital input lines and 16 digital output lines.

xPC Target supports this board with these driver blocks:
¢ “PCL-818HD Analog Input (A/D)” on page 11-43

¢ “PCL-818HD Analog Output (D/A)” on page 11-45

¢ “PCL-818HD Digital Input” on page 11-46

¢ “PCL-818HD Digital Output” on page 11-47

Board Characteristics

Board name PCL-818HD
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-818HD Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select differential
(Input coupling parameter set to differential), enter numbers between 1

11-43

1 1 Advantech

11-44

and 8. For example, to use the first and second analog output (A/D) channels,
enter

[1,2]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

-10 to +10 -10
-5 to +5 -5
-2.5t0 +2.5 -2.5
-1.25 to +1.25 -1.25

-.625 to +.625 -0.625

0to 10 10
0to+5 5
0to +2.5 2.5
0to +1.25 1.25

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings on the board.

Input coupling — From the list, select one from the following list of input
modes:

PCL-818HD

® Single-ended channels (16 channels)

e differential channels (8 channels)

Your choice must correspond to the MUX switch setting on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818HD Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter
Range — From the list, choose either 0-10V or 0-5V.

The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-45

1 1 Advantech

11-46

PCL-818HD Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818HD

PCL-818HD Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-47

1 1 Advantech

PCL-818HG

The PCL-818 is an I/O board with 16 single or eight differential analog input
(A/D) channels (12-bit) with a maximum sample rate of 100 KHz, one analog
output (D/A) channel (12-bit), and 16 digital input lines and 16 digital output
lines.

xPC Target supports this board with these driver blocks:
¢ “PCL-818HG Analog Input (A/D)” on page 11-48

¢ “PCL-818HG Analog Output (D/A)” on page 11-50

* “PCL-818HG Digital Input” on page 11-51

® “PCL-818HG Digital Output” on page 11-52

Board Characteristics

Board name PCL-818HG
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

PCL-818HG Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

11-48

PCL81

8HG

Driver Block Parameters

Channel vector — If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select differential
(Input coupling parameter set to differential), enter numbers between 1
and 8. For example, to use the first and second analog output (A/D) channels,
enter

[1,2]
Number the channels beginning with 1 even if the board manufacturer starts

to number the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

-10 to +10 -10
-5to +5 -5
-2.5to +2.5 -2.5
-1.25 to +1.25 -1.25

-.625 to +.625 -0.625

0to 10 10
0to+1 1
0to +0.1 0.1
0 to +0.01 0.01

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

11-49

1 1 Advantech

11-50

The range settings must correspond to the DIP switch settings on the board.

Input coupling — From the list, select one from the following list of input
modes:

® Single-ended channels (16 channels)
® differential channels (8 channels)

Your choice must correspond to the MUX switch setting on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818HG Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter
Range — From the list, choose either 0-10V or 0-5V.

The range settings must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818HG

PCL-818HG Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-51

1 1 Advantech

11-52

PCL-818HG Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818L

PCL-818L

The PCL-818L is an I/O board with 16 single or eight differential analog input
(A/D) channels (12-bit) with a maximum sample rate or 40 KHz, one analog
output (D/A) channels (12-bit), 16 digital input lines, and 16 digital output
lines.

xPC Target supports this board with these driver blocks:
¢ “PCL-818L Analog Input (A/D)” on page 11-53

¢ “PCL-818L Analog Output (D/A)” on page 11-55

¢ “PCL-818L Digital Input” on page 11-56

¢ “PCL-818L Digital Output” on page 11-57

Board Characteristics

Board name PCL-818
Manufacturer Advantech
Bus type ISA

Access method I/O mapped
Multiple block instance support Yes
Multiple board support Yes

PCL-818L Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

11-53

1 1 Advantech

11-54

Driver Block Parameters

Channel vector — If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select differential
(Input coupling parameter set to differential), enter numbers between 1
and 8. For example, to use the first and second analog output (A/D) channels,
enter

[1,2]
Number the channels beginning with 1 even if the board manufacturer starts

to number the channels with 0.

Range vector — Enter a range code for each of the channels in the channel
vector. The range vector must be the same length as the channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code

-10 to +10 -10
-5 to +5 -5
-2.5t0 +2.5 -2.5
-1.25 to +1.25 -1.25

-.625 to +.625 -0.625

For example, if the first channel is -10 to +10 volts, and the second channel is
-5 to 5 volts, enter

[-10,-5]
The range settings must correspond to the DIP switch settings on the board.

Input coupling — From the list, select one from the following list of input
modes:

® Single-ended channels (16 channels)
e differential channels (8 channels)

PCL-818L

Your choice must correspond to the MUX switch setting on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818L Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter
Range — From the list, choose either 0-10V or 0-5V.

The range setting must correspond to the DIP switch settings on the board.
Sample time — Base sample time or a multiple of the base sample time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-55

1 1 Advantech

11-56

PCL-818L Digital Input

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter channels between 1 and 16. This driver allows the
selection of individual digital input lines in any order. The number of elements
defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

PCL-818L

PCL-818L Digital Output

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters

Channel vector — Enter channels between 1 and 16. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

11-57

1 1 Advantech

11-58

Analogic

This chapter describes the Analogic I/0 boards supported by xPC Target
(http://www.analogic.com).

AIM12 (p. 12-2) I/0 board with 16 single or 8 differential analog input
(A/D) channels (12-bit)
AIM16 (p. 12-6) I/0 board with 16 single or 8 differential analog input

(A/D) channels (16-bit)

12

Analogic

12-2

AlM12

This board comes in three configurations from the factory. The configurations
are the AIM12-1/104, the AIM16-1/104, and the AIM16-2/104. The
AIM16-1/104 and the AIM16-2/104 differ only in the time needed to acquire
each sample. The AIM12-1/104 acquires 4 fewer bits, but since the 12 bits are
placed in the high 12 bits of the result word, the internal scaling factors are
identical to those used with the AIM16. The output of the AIM12 changes in
larger steps. Gain settings for the AIM12 are also different than for the AIM16.

When acquiring samples from multiple channels, the board is driven in its
burst mode when the highest clock rate available for the board is used. The
AIM12-1/104 can acquire all 16 channels in 160 microseconds.

The AIM12 hardware can acquire from 1 to 16 (single ended) channels at each
sample time. These channels must be in a contiguous group, but can start with
any channel number and end with any channel number that is greater than or
equal to the start channel number. A single channel is acquired by setting both
first channel and last channel to the same value.

The choice of unipolar or bipolar conversion range is made by placing jumpers
in accordance with the hardware manual. The driver is able to read the
hardware configuration and adjusts the integer to float conversion as
necessary.

xPC Target supports this board with these driver blocks:
e “ATM12 Analog Input (A/D)” on page 12-3

® “AIM12 Digital Input” on page 12-4

e “ATM12 Digital Output” on page 12-5

Board Characteristics

Board name AIM12
Manufacturer Analogic
Bus type PC/104
Access method I/0 mapped

Multiple block instance support No
Multiple board support Yes

AIM12

AIM12 Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Input Data Type Scaling

volts Double 1

Driver Block Parameters

First channel — In Single-ended (16 channels) input mode, enter a number
between 1 and 16 to indicate the first channel to be acquired. In Differential
(8 channels) input mode, enter a a number between 1 and 8.

Last channel — This is the last channel to acquire. The number must be
greater than or equal to the first channel. In Single-ended (16 channels)
input mode, the number must be less than or equal to 16. In Differential (8
channels) input mode, the number must be less than or equal to 8.

Input coupling — From the list, select one from the following list of input
modes:

® Single-ended channels (16 channels)

® Differential channels (8 channels)

Check the hardware manual of the board for wiring configurations.

Gain vector — Enter a vector of gain values with one entry for each channel
in the range first channel to last channel. Allowable gain settings for the
AIM12 are 1, 10, and 100. If you enter a scalar for gain, this gain value is used
for all channels.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

12-3

12 Analogic

124

AIM12 Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines to be read. This driver allows the selection of individual digital input lines
in any order. The number of elements defines the number of digital lines used.
For example, to use all of the digital inputs enter

(1, 2, 3, 4, 5, 6, 7, 8]

Number the channels beginning with 1 even though the board manufacturer
numbers them beginning with 0.

Channel group — Choose Lower 8 bits to connect to channels 1 through 8 or
Upper 8 bits to connect to channels 9 through 16.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

AIM12

AIM12 Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines to be read. This driver allows the selection of individual digital input lines
in any order. The number of elements defines the number of digital lines used.
For example, to use all of the digital inputs enter

(1, 2, 3, 4, 5, 6, 7, 8]

Number the channels beginning with 1 even though the board manufacturer
numbers them beginning with 0.

Channel group — Choose Lower 8 bits to connect to channels 1 through 8 or
Upper 8 bits to connect to channels 9 through 16.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

12-5

12

Analogic

12-6

AlIM16

This board comes in three configurations from the factory. The configurations
are the AIM12-1/104, the AIM16-1/104 and the AIM16-2/104. The
AIM16-1/104 and the AIM16-2/104 differ only in the time needed to acquire
each sample. The AIM12-1/104 acquires 4 fewer bits, but since the 12 bits are
placed in the high 12 bits of the result word, the internal scaling factors are
identical to those used with the AIM16. The output of the AIM12 changes in
larger steps. Gain settings for the AIM12 are also different than for the AIM16.

When acquiring samples from multiple channels, the board is driven in its
burst mode when the highest clock rate available for the board is used. The
AIM16-1/104 can acquire all 16 channels in 160 microseconds while the
AIM16-2/104 completes the same acquisition in 80 microseconds.

The AIM16 hardware can acquire from 1 to 16 (single ended) channels at each
sample time. These channels must be in a contiguous group, but can start with
any channel number and end with any channel number that is greater than or
equal to the start channel number. A single channel is acquired by setting both
first channel and last channel to the same value.

The choice of unipolar or bipolar conversion range is made by placing jumpers
in accordance with the hardware manual. The driver is able to read the
hardware configuration and adjusts the integer to float conversion as
necessary.

xPC Target supports this board with these driver blocks:
e “ATM16 Analog Input (A/D)” on page 12-7

® “AIM16 Digital Input” on page 12-8

® “ATM16 Digital Output” on page 12-9

Board Characteristics

Board name AIM16
Manufacturer Analogic
Bus type PC/104
Access method I/0 mapped

AIM16

Multiple block instance support No
Multiple board support Yes

AIM16 Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Input Data Type Scaling

volts Double 1

Driver Block Parameters

First channel —In Single-ended (16 channels) input mode, enter a number
between 1 and 16 to indicate the first channel to be acquired. In Differential
(8 channels) input mode, enter a a number between 1 and 8.

Last channel — This is the last channel to acquire. The number must be
greater than or equal to the first channel. In Single-ended (16 channels)
input mode, the number must be less than or equal to 16. In Differential (8
channels) input mode, the number must be less than or equal to 8.

Input coupling — From the list, select one from the following list of input
modes:

® Single-ended channels (16 channels)
® Differential channels (8 channels)

Check the hardware manual of the board for wiring configurations.

Gain vector — Enter a vector of gain values with one entry for each channel
in the range first channel to last channel. Allowable gain settings for the
AIM16 are 1, 2, 4, and 8. If you enter a scalar for gain, this gain value is used
for all channels.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

12-7

12 Analogic

12-8

AIM16 Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines to be read. This driver allows the selection of individual digital input lines
in any order. The number of elements defines the number of digital lines used.
For example, to use all of the digital inputs enter

(1, 2, 3, 4, 5, 6, 7, 8]

Number the channels beginning with 1 even though the board manufacturer
numbers them beginning with 0.

Channel group — Choose Lower 8 bits to connect to channels 1 through 8 or
Upper 8 bits to connect to channels 9 through 16.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

AIM16

AIM1 6 Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines to be read. This driver allows the selection of individual digital input lines
in any order. The number of elements defines the number of digital lines used.
For example, to use all of the digital inputs enter

(1, 2, 3, 4, 5, 6, 7, 8]

Number the channels beginning with 1 even though the board manufacturer
numbers them beginning with 0.

Channel group — Choose Lower 8 bits to connect to channels 1 through 8 or
Upper 8 bits to connect to channels 9 through 16.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

12-9

12 Analogic

12-10

BittWare

This chapter describes the BittWare boards supported by xPC Target (http://www.bittware.com).

Audio-PMC+ (p. 13-2) Professional audio board with 8 channels of audio input
and output.

1 3 BittWare

Audio-PMC+

The Audio-PMC+ board is an audio board with 8 I/O channels.
xPC Target supports this board with these driver blocks:

¢ “Audio-PMC+ Analog Input” on page 13-3
® “Audio-PMC+ Analog Output” on page 13-5

Block parameters for the input and output blocks appear the same.

Board Characteristics

Board name Audio-PMC+
Manufacturer BittWare

Bus type PCI

Access method Memory mapped
Multiple block instance support No

Multiple board support No

Features

¢ Input and output are in the form of the Signal Processing Blockset frame
signal type when the frame is larger than a single sample.

¢ The analog input block outputs a double or 32 bit integer frame of data.

® The Audio-PMC+ board performs acquisition simultaneously for all the
selected channels in a model.

® The analog output block is dynamically typed. The integer or double data
type is taken from the connection instead of a block parameter.

Hardware Installation Notes

The Audio-PMC+ daughter board might come from BittWare with jumpers
installed to boot from an onboard ROM. You must remove these jumpers, as
follows:

13-2

AudioPMC+

1 With the Audio-PMC+ off the carrier board, look for 6 pairs of pins along one
edge. For proper operation with xPC Target, none of the pairs should be
jumpered.

2 If there are any jumpers present, remove and then reinstall the jumpers
with only one pin connected. Leave the other side of the jumper hanging.
Leaving the jumpers like this will provide you with the jumpers if you want
to use the board in ROM bootable mode at some future time.

Audio-PMC+ Analog Input

Driver Block Parameters

Channel Vector — This is a vector of channels. Specifies the input channels
that the block works on. For example, to use the first, third, and fifth analog
input channels, enter

[1,3,5]
Output Format — Specify the format that the data takes. The choices are

® A normalized double in the range from -1.0to 1.0

® An unscaled integer

The unscaled integer format is usable with blocks that can accept fixed point
data. This format contains the data in the lower 24 bits of a 32 bit integer
with sign extension in the upper 8 bits.

This parameter is only settable for the analog input block. The analog output
block determines the data type from the connection and sets itself
appropriately.

Frame Size, Sample Rate, and Sampletime — These three parameters are
not independent but are related by:

FrameSize = Sampletime x SampleRate

After you specify two of the parameters, the equation determines the third
parameter.

13-3

1 3 BittWare

13-4

For example, if you set Frame Size to 32 and Sample Rate to 40000, specify
Sampletime as -1. It is computed internally to 0.0008 seconds. This example
model will execute every 0.0008 seconds, which is every 32 samples at 40 KHz.

Conversely, you can also specify that you want to execute every 1.0 ms with a
Frame Size of 64 samples. Specify Sample Rate as -1. It is computed to be
64000 Hz.

The implementation of Sample Rate on the Audio-PMC+ might cause the rate
on your board to be inexact. Audio-PMC+ derives the sample rate using the
PWMO output from the first 21065L SHARC DSP chip. The base clock that
effects this output is the 60 MHz CPU clock for sample rates between 100 KHz
and 20 KHz and a prescaled 30 MHz CPU clock (half the 60 MHz CPU clock)
for sample rates between 8 KHz and 20 KHz.

The sample rate is implemented internally by specifying the total number of
counts per sample interval. For example, the number of counts for a sample
rate of 44.1 KHz is calculated as

60x10%/44.1x10° = 1360.544217

This value is rounded down to 1360. To calculate the actual clock sample rate,
divide 60 MHz by the number of counts
60x10%/1360 = 44117.647

The result indicates that the sample rate is off by 0.04%. This calculation
assumes that the CPU clock is exactly 60 MHz.

Since you can build a model with just input or just output, the three rate
parameters are included in both block parameter dialogs. You must set them
to equal values if you have a model that has both. If they are not equal, you will
get an error when you try to build the model.

The practical limit on Sample Rate is

8000 < SampleRate < 100000

Below 8 KHz, the output digital filter does not seem to work, although the
converter continues to work there.

Frame Size values can be between 1 and 256. If the specified or computed
frame size exceeds 256, the driver will return an error during initialization.

AudioPMC+

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpei

Note The use of multiple boards, at the same time and in the same model, is
unsupported.

Audio-PMC+ Analog Output

Driver Block Parameters

Channel Vector — This is a vector of channels. Specifies the output channels
that the block works on. For example, to use the first, third, and fifth analog
output channels, enter

[1,3,5]

Frame Size, Sample Rate, and Sampletime — These three parameters are
not independent but are related by:

FrameSize = Sampletime x SampleRate

After you specify two of the parameters, the equation determines the third
parameter.

For example, if you set Frame Size to 32 and Sample Rate to 40000, specify
Sampletime as -1. It is computed internally to 0.0008 seconds. This example
model will execute every 0.0008 seconds, which is every 32 samples at 40 KHz.

13-5

1 3 BittWare

13-6

Conversely, you can also specify that you want to execute every 1.0 ms with a
Frame Size of 64 samples. Specify Sample Rate as -1. It is computed to be
64000 Hz.

The implementation of Sample Rate on the Audio-PMC+ might cause the rate
on your board to be inexact. Audio-PMC+ derives the sample rate using the
PWMO output from the first 21065L SHARC DSP chip. The base clock that
effects this output is the 60 MHz CPU clock for sample rates between 100 KHz
and 20 KHz and a prescaled 30 MHz CPU clock (half the 60 MHz CPU clock)
for sample rates between 8 KHz and 20 KHz.

The sample rate is implemented internally by specifying the total number of
counts per sample interval. For example, the number of counts for a sample
rate of 44.1 KHz is calculated as

60x10%/44.1x10° = 1360.544217

This value is rounded down to 1360. To calculate the actual clock sample rate,
divide 60 MHz by the number of counts

60x10°/1360 = 44117.647

The result indicates that the sample rate is off by 0.04%. This calculation
assumes that the CPU clock is exactly 60 MHz.

Since you can build a model with just input or just output, the three rate
parameters are included in both block parameter dialogs. You must set them
to equal values if you have a model that has both. If they are not equal, you will
get an error when you try to build the model.

The practical limit on Sample Rate is

8000 < SampleRate < 100000

Below 8 KHz, the output digital filter does not seem to work, although the
converter continues to work there.

Frame Size values can be between 1 and 256. If the specified or computed
frame size exceeds 256, the driver will return an error during initialization.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1

to automatically locate the board.

AudioPMC+

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

Note The use of multiple boards, at the same time and in the same model, is
unsupported.

Frame Size, Sample Rate, and Sampletime Notes

Experimentally, with all 8 input and all 8 output channels in use, the
Audio-PMC+ can run with sample rates below the following frequencies as a
function of Frame Size:

Frame Size Maximum Sample Rate

1 15 KHz
2 30 KHz
3 40 KHz
4 45 KHz
8 70 KHz
16 80 KHz
32 80 KHz
64 100KHz
128 100KHz
256 100KHz

If fewer than all 8 inputs and outputs are in use, then the maximum sample
rate increases.

13-7

1 3 BittWare

Frame Size 1 Channel 2 Channels 4 Channels 6 Channels 8 Channels
1 30 KHz 30 KHz 25 KHz 18 KHz 15 KHz
2 60 KHz 60 KHz 45 KHz 33 KHz 30 KHz

13-8

These above rates were obtained from testing at The MathWorks. As with all
hardware benchmarks, results might vary, depending on a number of
hardware conditions. For example, the following hardware elements, among
others, might effect your throughput:

¢ The PCI bus interface chip set on the mother board

® Main memory speed

® General mother board architecture

Model Notes

Model Execution Timing — To run the model, the xPC Target model is
executed when each frame completes on the board. Set the simulation
parameters to use the interrupt from the Audio-PMC+ rather than the timer
interrupt when running the model. First, you need to determine the interrupt
vector number to which the board is set. This is determined by the BIOS in the
target machine during boot.

1 From the MATLAB Command Window, type

getxpcpci

This command lists board information for all installed PCI devices that xPC
Target knows about.

2 Find the IRQ specified for this board. This is the interrupt source number
you need to specify in the xPC target code generation options field in step
6 of the following procedure.

Set the interrupt vector number:

AudioPMC+

From the MATLAB Command Window, type the name of your Simulink
model.

The Simulink model appears

From the Simulation menu, click Configuration Parameters.
The Configuration Parameter dialog box is displayed for the model.
Click the xPC Target options node.

Ensure that the Execution mode field is set to Real-Time.

Click the Real-time interrupt source list.

Select the interrupt number to which the board is set (from step 2 in the
previous procedure).

Click the I/O board generating the interrupt list and select AudioPMC+
from the list.

Click OK and save the model.

Failure to set the interrupt vector as described, which results in your using the
xPC Target timer, will not stop the model from running. However, you will
occasionally see corrupt data since the Audio-PMC+ clock and the xPC Target
timer drift relative to each other and will sometimes overlap.

Example Models — Two example models are included with this version in the
xpcdemos directory. Correct operation of either of these requires that the
interrupt source be set correctly in the simulation parameters dialog.

xpc8audiochannels.mdl shows the use of all 8 input and 8 output channels at
the same time. A block from the Signal Processing Blockset is used to convert
from frame to sample based signals to drive the xPC Target scopes.

xpcaudiospectrum.mdl uses the xPC Target Spectrum Scope subsystem from
the xpcdspspectrum sample model with the Audio-PMC+ as the source. This
model only works correctly with Frame Size set to 1 because of the way that the
spectrum scope displays the results.

13-9

1 3 BittWare

13-10

Model Execution Limitations — Model execution is entered each time a
frame completes on the Audio-PMC+ board. The frame rate is the fastest clock
available. You cannot obtain a minor step execution that runs more frequently
than frame completions. Any attempt to do a multirate model must use the
frame completion time as the fastest rate. The audio input and audio output
blocks must be executed at the fastest rate in the model.

Input and output data from these blocks is in the form of a frame of data as
used by the Signal Processing Blockset. If the frame size is 1, then the blocks
revert to sample based signals. The blocks in the Signal Processing Blockset
expect to see signals that are frames.

BVM

This chapter describes the BVM I/0 boards supported by xPC Target (http://www.bvmltd.co.uk).

PMCDIO64 (p. 14-2) A 64-bit digital I/O board with two ports. Each port can be
configured to be either 32 independent 1-bit channels or a
single 32-bit wide integer channel.

14 sy

14-2

PMCDIO64

The PMCDIOG64 is a 64-bit digital I/O board. The hardware provides 64 bits,
which the driver splits into two ports of 32 bits each. Each port can be
configured to be either input or output. In addition, each port can be configured
to be either 32 independent 1-bit channels or a single 32-bit wide integer

channel.

xPC Target supports this board with these driver blocks:

* “PMCDIO64 Digital Input” on page 14-3
e “PMCDIO64 Digital Output” on page 14-4

Board Characteristics

Board name

Manufacturer

Bus type

Access method

Multiple block instance support

Multiple board support

PMCDIO64
BVM

PCI

Memory mapped
Yes

Yes

PMCDIO64

PMCDIO64 Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Format — From the list, select either 32 One bit channels or Single 32 bit
port.

If the format is 32 One bit channels, then the channel vector specifies the
configuration of the block. Each output is a double with value of 0 or 1. The
value is 0 when the hardware input voltage is low.

Ifthe format is Single 32 bit port, then the output from the block is a 32-bit
integer where all 32 bits on the hardware feed into the single output. The
channel vector is not used in this mode and is unavailable on the Block
Parameters dialog box. The least significant bit is the lowest numbered bit in
the hardware manual.

Channel vector — This is a vector of channels. This parameter is only used
when the format is 32 One bit channels. Channels are numbered from 1 to
32 even though the hardware manual labels them 0 to 31.

Port — Each half of the 64 bits is a separate port. Port 1 is the lower 32 bits
and Port 2 is the upper 32 bits. You can use one port for input and the other
port for output.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1

to automatically locate the board.

14-3

14 sy

14-4

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

PMCDIO64 Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL double < 0.5 =TTL low
> 0.5 = TTL high

Driver Block Parameters

Format — From the list, choose either 32 One bit channelsor Single 32 bit
port.

If the format is 32 One bit channels, then the channel vector specifies the
configuration of the block. Each input is a double. The hardware output is set
to low voltage if the input is < 0.5 and high voltage if the input is > 0.5.

If the format is Single 32 bit port, then the input to the block is a 32-bit
integer where all 32 bits on the hardware are controlled by the single input.
The channel vector is not used in this mode and is unavailable on the Block
Parameters dialog box. The least significant bit is the lowest numbered bit in
the hardware manual.

Channel vector — This is a vector of channels and is only used when the
format is 32 One bit channels. Channels are numbered from 1 to 32 even
though the hardware manual labels them 0 to 31. Hardware I/O signal
numbers 1032 to I063 are acquired by choosing Port 2 and channels 1 to 32.

Reset action vector — If you chose 32 One bit channels, enter a vector of 1’s
and 0’s that is the same length as the channel vector. A value of 1 indicates that
the channel is reset to the value in the initial value vector when the model is

stopped. A value of 0 indicates that the output remains at the last value written

PMCDIO64

when the model is stopped. If you enter a scalar value, that value is used for all
channels.

If you chose Single 32 bit port, enter a 1 or a 0 to determine what happens
when the model is stopped. If you enter 1, all 32 bits of the output are reset to
the value given by the initial value vector. If you enter 0, the output remains
at the last value written when the model is stopped.

Initial value vector — If you chose 32 One bit channels, this vector
determines both the initial value of the outputs at xPC boot time and the values
when model execution is stopped. A value of 1 for a given channel sets the
output for that channel to 1 while any other value sets the output to 0.

If you chose Single 32 bit port, enter the scaler value to write to the output
port. The value can be a hexadecimal or a decimal. If it is a hexadecimal, then
use C syntax. For example, Oxaaaaaaaa in hexadecimal would be the
equivalent of 2863311530 in decimal.

Port — Each half of the 64 bits is a separate port. Port 1 is the lower 32 bits
and Port 2 is the upper 32 bits. You can use one port for input and the other
port for output. In a given model, each port can only be set to one direction.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

14-5

14 sy

14-6

Contec

This chapter describes the Contec I/O boards supported by xPC Target (http://www.contec.com).

Contec AD12-16(PCI) (p. 15-3)

Contec AD12-16(PCDE (p. 15-8)

Contec AD12-16U(PCDE (p. 15-11)

Contec ADI12-16(PCI) (p. 15-14)

Contec AD12-64(PCI) (p. 15-16)

Contec AD16-16(PCIDE (p. 15-21)

Contec DA12-4(PCI) (p. 15-24)
Contec DA12-16(PCI) (p. 15-26)

I/0 board with 16 single-ended or 8 differential analog
input (A/D) channels (12 bit), 4 digital input lines, and 4
digital output lines.

I/0 board with 16 single-ended or 8 differential analog
input (A/D) channels (12 bit), one analog output channel
(12 bit), 4 digital input lines, 4 digital output lines, and
an 18254-compatible counter.

I/0 board with 16 single-ended or 8 differential analog
input (A/D) channels (12 bit), one analog output channel
(12 bit), 4 digital input lines, 4 digital output lines, and
an 18254-compatible counter.

I/0 board with 16 single-ended or 8 differential analog
input (A/D) channels (12 bit), 4 digital input lines, and 4
digital output lines.

I/0 board with 64 single-ended or 32 differential analog
input (A/D) channels (12 bit), 4 digital input lines, and 4
digital output lines.

I/O board with 16 single-ended or 8 differential analog
input (A/D) channels (16 bit), one analog output channel
(16 bit), 4 digital input lines, 4 digital output lines, and
an 18254-compatible counter.

1/0 board with 4 analog output (D/A) channels (12 bit).
I/0 board with 16 analog output (D/A) channels (12 bit).

1 5 Contec

Contec PI0-32/32T(PCI) (p. 15-28) I/0 board with 32 digital input lines and 32 digital output
lines.

Contec CNT24-4D(PCI) (p. 15-31) 24-bit differential up/down counter board with four
channels.

15-2

Contec AD12-16(PCl)

Contec AD12-16(PCI)

The Contec AD12-16(PCI) is an I/O board with 16 single-ended or 8 differential
analog input (A/D) channels (12 bit), 4 digital input lines, and 4 digital output
lines.

xPC Target supports this board with these driver blocks:

¢ “AD12-16(PCI) Analog Input (A/D)” on page 15-3
¢ “AD12-16(PCI) Digital Input” on page 15-5
* “AD12-16(PCI) Digital Output” on page 15-6

xPC Target does not support the Counter/Timer functionality of the board.

Board Characteristics

Board name AD12-16(PCI)
Manufacturer Contec

Bus type PCI

Access method I/0 mapped

Multiple block instance support No
Multiple board support Yes

AD12-16(PCl) Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the input channels. For
example to use the first three analog input (A/D) channels, enter

(1, 2, 3]

15-3

1 5 Contec

154

The channel numbers can occur in any order. Number the them beginning with
1 even if the board manufacturer numbers them beginning with 0.

The maximum allowable channel number for this board is 8 (double-ended) or
16 (single-ended). If the highest channel number you specify is n, the hardware
converts all the channels between 1 and n, whether or not they occur in your
channel vector. It is most efficient to specify a contiguous range of channels.
(Permuting the order of such a range has no impact on efficiency however.)

Range vector — This board allows the range of each channel to be selected
independently. Enter a scalar, in which case the same range will be used for all
channels, or a vector the same length as the channel vector. The range vector
entries must be range codes selected from the following table:.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0to 10 10

-5 to +5 -5 Otob 5

-2.5t02.5 -2 0to2.5 2

-1.25 to 1.25 -1 0to 1.25 1

Polarity — Choose single-ended or double-ended. This setting applies to all
channels.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

Contec AD12-16(PCl)

The Device ID of this board is 8153.

AD12-16(PCl) Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the input channels. For
example to use the first and third digital input channels enter

(1, 3]

The channel numbers can occur in any order. Number the channels beginning
with 1 even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number is 4.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci
The Device ID of this board is 8153.

15-5

1 5 Contec

15-6

AD12-16(PCl) Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 TTL high

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the output channels.
For example, to use the first and third digital output channels enter

[1, 3]

The channel numbers can occur in any order. Number the channels beginning
with 1 even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number is 4.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial values (0 or
1) of the output channels. Enter a scalar or a vector that is the same length as
the channel vector. If you enter a scalar, that value is used for all channels. The
channels are set to these initial values between the time the model is
downloaded and the time it is started.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1

to automatically locate the board.

Contec AD12-16(PCl)

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci
The Device ID of this board is 8153.

15-7

1 5 Contec

Contec AD12-16(PCI)E

15-8

The Contec AD12-16(PCI)E is an I/O board with 16 single-ended or 8
differential analog input (A/D) channels (12 bit), one analog output channel (12
bit), 4 digital input lines, 4 digital output lines, and an i8254-compatible
counter.

xPC Target supports this board with these driver blocks:

¢ “AD12-16(PCDE Analog Input (A/D)” on page 15-8
* “AD12-16(PCDE Analog Output (D/A)” on page 15-10

xPC Target does not support the digital I/O or Counter/Timer functionality of
the board.

Board Characteristics

Board name AD12-16(PCDE
Manufacturer Contec

Bus type PCI

Access method I/0 mapped

Multiple block instance support No
Multiple board support Yes

AD12-16(PCI)E Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the input channels. For
example, to use the first three analog input (A/D) channels, enter

(1, 2, 3]

Contec AD12-16(PCI|E

The channel numbers can occur in any order. Number them beginning with 1
even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number for this board is 8 (double-ended) or 16
(single-ended).

Gain vector — To specify the gain, enter 1, 2, 4, or 8 for each of the channels
in the channel vector. The gain vector must be the same length as the channel
vector. If you enter a scalar, the value is applied to all channels.

The gain is applied to the signal prior to sampling the voltage. After the signal
voltage is sampled, the result is divided by the gain to obtain the block output
signal value. To avoid clipping, make sure that the amplified gain falls within
the range you selected.

Range — From the list, select Bipolar -10V to +10Vor Unipolar OV to +10V.
This range applies to all channels.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci
Note that the Device ID of this board is 8113.

15-9

1 5 Contec

15-10

AD12-16(PCI)E Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameters
Range — From the list, select -5V to +5V, -10V to +10V,or 0 to +10V as the

output range for the analog output. This range must correspond to the output
range determined by the jumpers on the board.

Reset — This check box controls the behavior of the output channel at model
termination. If the check box is selected, the output channel is reset to the
value specified as the initial value. If the check box is not selected, the output
channel remains at the most recent value attained while the model was
running.

Initial value — Enter the initial voltage value for the output channel. The
output channel is set to this value between the time the model is downloaded
and the time the model is started. Also, if the reset check box is selected, the
output channel is reset to the initial value when the model is stopped.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

Note that the Device ID of this board is 8113.

Contec AD12-16U(PCIJE

Contec AD12-16U(PCI)E

The Contec AD12-16U(PCI)E is an I/O board with 16 single-ended or 8
differential analog input (A/D) channels (12 bit), one analog output channel (12
bit), 4 digital input lines, 4 digital output lines, and an i8254-compatible
counter.

xPC Target supports this board with these driver blocks:

* “AD12-16U(PCIE Analog Input (A/D)” on page 15-11
¢ “AD12-16U(PCI)E Analog Output (D/A)” on page 15-12

xPC Target does not support the digital I/O or Counter/Timer functionality of
the board.

Board Characteristics

Board name AD12-16U(PCDE
Manufacturer Contec

Bus type PCI

Access method I/0O mapped

Multiple block instance support No
Multiple board support Yes

AD12-16U(PCI)E Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the input channels. For
example, to use the first three analog input (A/D) channels, enter

(1, 2, 3]

15-11

1 5 Contec

15-12

The channel numbers can occur in any order. Number them beginning with 1
even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number for this board is 8 (double-ended) or 16
(single-ended).

Range — From the list, select Bipolar -2.5V to +2.5V,Bipolar -5V to +5V,
Unipolar OV to +5V, or Unipolar OV to +10V. This range applies to all
channels.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

Note that the Device ID of this board is 8103.

AD12-16U(PCI)E Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameters

Range — From the list, select -5V to +5V, -10V to +10V,or 0 to +10V as the
output range for the analog output. This range must correspond to the output
range determined by the jumpers on the board.

Contec AD12-16U(PCIJE

Reset — This check box controls the behavior of the output channel at model
termination. If the check box is selected, the output channel is reset to the
value specified as the initial value. If the check box is not selected, the output
channel remains at the most recent value attained while the model was
running.

Initial value — Enter the initial voltage value for the output channel. The
output channel is set to this value between the time the model is downloaded
and the time the model is started. Also, if the reset check box is selected, the
output channel is reset to the initial value when the model is stopped.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

Note that the Device ID of this board is 8103.

15-13

1 5 Contec

Contec ADI12-16(PCI)

15-14

The Contec ADI12-16(PCI) is an I/O board with 16 single-ended or 8
differential analog input (A/D) channels (12 bit), 4 digital input lines, and 4
digital output lines.

Board Characteristics

Board name ADI12-16(PCI)
Manufacturer Contec

Bus type PCI

Access method I/0 mapped

Multiple block instance support No
Multiple board support Yes

ADI12-16(PCIl) Analog Input (A/D)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the input channels. For
example, to use the first three analog input (A/D) channels, enter

(1, 2, 3]

The channel numbers can occur in any order. Number them beginning with 1
even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number for this board is 8 (double-ended) or 16
(single-ended).

Gain vector — To specify the gain, enter 1, 2, 4, or 8 for each of the channels
in the channel vector. The gain vector must be the same length as the channel
vector. If you enter a scalar, the value is applied to all channels.

Contec ADIT2-16(PCl)

The gain is applied to the signal prior to sampling the voltage. After the signal
voltage is sampled, the result is divided by the gain to obtain the block output
signal value. To avoid clipping, make sure that the amplified gain falls within
the range you selected.

Range — From the list, select Bipolar -10V to +10V, Unipolar OV to +10V,
or Unipolar 4mA to 20mA. Choose a range that is consistent with the jumper
settings on the board. This range applies to all channels.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

Note that the Device ID of this board is 8133.

15-15

1 5 Contec

Contec AD12-64(PCl)

15-16

The Contec AD12-64(PCI) is an I/O board with 64 single-ended or 32
differential analog input (A/D) channels (12 bit), 4 digital input lines, and 4
digital output lines.

xPC Target supports this board with these driver blocks:

* “AD12-64(PCI) Analog Input (A/D)” on page 15-16
* “AD12-64(PCI) Digital Input” on page 15-18
* “AD12-64(PCI) Digital Output” on page 15-19

xPC Target does not support the Counter/Timer functionality of this board.

Board Characteristics

Board name AD12-64(PCI)
Manufacturer Contec

Bus type PCI

Access method I/0 mapped

Multiple block instance support No
Multiple board support Yes

AD12-64(PCl) Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the input channels. For
example, to use the first three analog input (A/D) channels, enter

(1, 2, 3]

Contec AD12-64(PCl)

The channel numbers can occur in any order. Number the them beginning with
1 even if the board manufacturer numbers them beginning with 0.

The maximum allowable channel number for this board is 32 (double-ended) or
64 (single-ended). If the highest channel number you specify is n, the hardware
will convert all the channels between 1 and n, whether or not they occur in your
channel vector. It is most efficient to specify a contiguous range of channels.
(Permuting the order of such a range has no impact on efficiency however.)

Range vector — This board allows the range of each channel to be selected
independently. If you enter a scalar, the same range is used for all channels. If
you enter a vector, it must be the same length as the channel vector. The range
vector entries must be range codes selected from the following table:.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0to 10 10

-5 to +5 -5 0tob 5

-2.5t0 2.5 -2 0to2.5 2

-1.25t0 1.25 -1 0to 1.25 1

Polarity — Choose single-ended or double-ended. This setting applies to all
channels.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpei

15-17

1 5 Contec

15-18

The Device ID of this board is 8143.

AD12-64(PCl) Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the input channels. For
example, to use the first and third digital input channels enter

[1, 3]

The channel numbers can occur in any order. Number the channels beginning
with 1 even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number is 4.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpei
The Device ID of this board is 8143.

Contec AD12-64(PCl)

AD12-64(PCl) Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 TTL high

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the output channels.
For example, to use the first and third digital output channels enter

[1, 3]

The channel numbers can occur in any order. Number the channels beginning
with 1 even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number is 4.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values (0 or 1) for the output channels. Enter a scalar or a vector that is the
same length as the channel vector. If you specify a scalar value, that value is
the initial value for all channels. The channels are set to the initial values
between the time the model is downloaded and the time it is started.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1

to automatically locate the board.

15-19

1 5 Contec
|

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci
The Device ID of this board is 8143.

15-20

Contec AD16-16(PCIIE

Contec AD16-16(PCI)E

The Contec AD16-16(PCIE is an I/O board with 16 single-ended or 8
differential analog input (A/D) channels (16 bit), one analog output channel (16
bit), 4 digital input lines, 4 digital output lines, and an i8254-compatible
counter.

xPC Target supports this board with these driver blocks:

* “AD16-16(PCDE Analog Input (A/D)” on page 15-21
* “AD16-16(PCI)E Analog Output (D/A)” on page 15-22

xPC Target does not support the digital I/O or Counter/Timer functionality of
the board.

Board Characteristics

Board name AD16-16(PCDE
Manufacturer Contec

Bus type PCI

Access method I/O mapped

Multiple block instance support No
Multiple board support Yes

AD16-16(PCI)E Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the input channels. For
example, to use the first three analog input (A/D) channels, enter

(1, 2, 3]

15-21

1 5 Contec

15-22

The channel numbers can occur in any order. Number them beginning with 1
even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number for this board is 8 (double-ended) or 16
(single-ended).

Range — From the list, select Bipolar -10V to +10V, Bipolar -5V to +5V,
Unipolar OV to +5V, or Unipolar OV to +10V. This range applies to all
channels.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

Note that the Device ID of this board is 8123.

AD16-16(PCI)E Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameters

Range — From the list, select -5V to +5V, -10V to +10V,or 0 to +10V as the
output range for the analog output. This range must correspond to the output
range determined by the jumpers on the board.

Contec AD16-16

(PCI)E

Reset — This check box controls the behavior of the output channel at model
termination. If the check box is selected, the output channel is reset to the
value specified as the initial value. If the check box is not selected, the output
channel remains at the most recent value attained while the model was
running.

Initial value — Enter the initial voltage value for the output channel. The
output channel is set to this value between the time the model is downloaded
and the time the model is started. Also, if the reset check box is selected, the
output channel is reset to the initial value when the model is stopped.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

Note that the Device ID of this board is 8123.

15-23

1 5 Contec

Contec DA12-4(PCl)

15-24

The Contec DA12-4(PCI) is an I/O board with 4 analog output (D/A) channels
(12 bit).

xPC Target supports this board with this driver block:
* “DA12-4(PCI) Analog Output (D/A)” on page 15-24

xPC Target does not support the timer, external trigger, or interrupt
functionality of this board.

Board Characteristics

Board name DA12-4(PCI)
Manufacturer Contec

Bus type PCI

Access method I/O mapped

Multiple block instance support No
Multiple board support Yes

DA12-4(PCl) Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the output channels.
For example, to use the first and second analog output (D/A) channels enter

[1, 2]

Contec DA12-4(PCl)

The channel numbers can occur in any order. Number the channels beginning
with 1 even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number is 4.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between
the time the model is downloaded and the time it is started.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

The Device ID of this board is 8183.

15-25

1 5 Contec

Contec DA12-16(PCI)

15-26

The Contec DA12-16(PCI) is an I/O board with 16 analog output (D/A) channels
(12 bit).

xPC Target supports this board with this driver block:
* “DA12-16(PCI) Analog Output (D/A)” on page 15-26

xPC Target does not support the timer, external trigger, or interrupt
functionality of this board.

Board Characteristics

Board name DA12-16(PCI)
Manufacturer Contec

Bus type PCI

Access method I/0 mapped

Multiple block instance support No
Multiple board support Yes

DA12-16(PCl) Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter a vector of numbers to specify the output channels.
For example, to use the first and second analog output (D/A) channels enter

[1, 2]

Contec DA12-16(PCl)

The channel numbers can occur in any order. Number the channels beginning
with 1 even if the board manufacturer numbers them beginning with 0. The
maximum allowable channel number is 16.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between
the time the model is downloaded and the time it is started.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

The Device ID of this board is 8163.

15-27

1 5 Contec

Contec PIO-32/32T(PCI)

15-28

The Contec PI0-32/32T(PCI) is an I/0 board with 32 digital input channels and
32 output channels.

xPC Target supports this board with these driver blocks:

¢ “PI0-32/32T(PCI) Digital Input” on page 15-28
e “PI0-32/32T(PCI) Digital Output” on page 15-29

xPC Target does not support the timer, external trigger, or interrupt
functionality of this board.

Board Characteristics

Board name PIO-32/32T(PCI)
Manufacturer Contec

Bus type PCI

Access method I/O mapped

Multiple block instance support No
Multiple board support Yes

PIO-32/32T(PCI) Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

I/O format — Select serial or parallel. If you select serial, the block is
configured to accept up to 32 one-bit input channels. If you select parallel,
the block is configured to accept a single 32-bit input channel and the channel
vector parameter is unavailable.

Contec PIO-32/32T(PClI)

Channel vector — If you selected serial I/O format, enter a vector of numbers
to specify the input channels for serial I/O format. For example, to use the first
and third digital input channels enter

[1, 3]

The channel numbers can occur in any order, but the numbers must lie in the
range 1 to 32.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci
The Device ID of this board is 8152.

P1O-32/32T(PCI) Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
TTL Double < 0.5 =TTL low
> 0.5 TTL high

Driver Block Parameters

I/0 format — Select serial or parallel. If you select serial, the block is
configured to accept up to 32 one-bit input channels for output. If you select
parallel, the block is configured to accept a single 32-bit channel and the
channel vector parameter is unavailable.

15-29

1 5 Contec

15-30

Channel vector — For serial I/O format, enter a vector of numbers to specify
the output channels. For example to use the first and third digital output
channels enter

[1, 3]

The channel numbers can occur in any order, but the numbers must lie in the
range 1 to 32.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values (0 or 1) for the output channels. Enter a scalar or a vector that is the
same length as the channel vector. If you specify a scalar value, that value is
the initial value for all channels. The channels are set to the initial values
between the time the model is downloaded and the time it is started. If you
selected parallel I/O format, the values can be in the form [hex2dec('ffffffff')].

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

The Device ID of this board is 8152.

Contec CNT24-4D(PCl)

Contec CNT24-4D(PCI)

The Contec CNT24-4D(PCI) is a 24-bit differential up/down counter board with
four channels. This board typically connects to incremental encoders.
Incremental encoders convert physical motion into electrical pulses than can
be used to determine velocity, direction, and distance.

xPC Target supports this board with one driver block:
¢ “CNT24-4D(PCI) Incremental Encoder” on page 15-31

xPC Target does not support the timer or interrupt functionality of this board.

Board Characteristics

Board name CNT24-4D(PCI)
Manufacturer Contec

Bus type PCI

Access method I/O mapped

Multiple block instance support No
Multiple board support Yes

CNT24-4D(PCI) Incremental Encoder

Driver Block Parameters

Note that you can have only one driver block instance for each physical board.
If you need to use multiple channels, select and enable more than channel on
the same block.

Channel — From the list, select 1, 2, 3, or 4. This parameter specifies the
channel to which the subsequent parameters refer. The other parameters in
this block apply to this channel. The Enable channel check box number
changes to match the selected channel.

15-31

1 5 Contec

15-32

Enable channel — Select this check box to enable the currently selected
channel. Click OK after you select this check box to add an output port for the
channel on the driver instance of your model. This check box also enables you
to set a number of operation parameters for the block, ranging from Input type
to Initial count. Whatever operation parameters are in place when you click
OK are preserved for the channel until the next time you change them.

The following are some additional behavior notes for this check box:

¢ If you do not select this check box for a channel, an output port for that
channel is not added to the block. You also cannot change the operation
parameters for the channel.

¢ If you select this check box and save the operation parameters for that
channel, then later deselect this check box, the block preserves the operation
parameters for the channel. The output port is removed from the block.

Input type — From the list, choose either Line receiver or TTL-1level input.
This parameter specifies the input type for the current channel.

Mode — From the list, select the counter operation mode for the current
channel. There are a number of modes, based on 1-phase or 2-phase pulse
inputs. See the Contec CNT24-4D(PCI) user’s guide documentation for
descriptions of these modes.

Note that of this list of modes, the Multiply by 4 modes are synonyms for
quadrature encoding.

Direction — From the list, select either Clockwise rotation counts down or
Clockwise rotation counts up as the counter direction of the current
channel.

Phase Z logic — From the list, select either Active highor Active low for the
current channel. This parameter specifies the state of the phase Z input
(reference position signal). If the phase Z mode parameter has a value of
Disable phase Z input, Phase Z logic has no effect.

Phase Z mode — From the list, select either Disable phase Z input, Enable
next phase Z input only once, or Enable every phase Z input. This
parameter specifies the operation mode of the phase Z input for the current
channel.

Contec CNT24-4D(PCl)

Digital filter — From the list, select the characteristics of the digital input
filter you want to apply to the current channel’s input signal. There are a
number of sampling cycles to choose from, ranging from 0.1 microseconds (1
MHz) to 1056.1 microseconds (94 Hz).

Initial count — Enter a number from 0 to 16777215 (FFFFFF hex, the largest
24-bit number). This parameter specifies the initial value of the counter for the
current channel.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this
driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

The Device ID of this board is 8163.

15-33

1 5 Contec

15-34

Data Translation

1/0O boards supported by xPC Target. (http://www.datx.com)

DT2821 (p. 16-3)

DT2821-F-8DI (p. 16-8)

DT2821-G-8DI (p. 16-13)

DT2821-F-16SE (p. 16-18)

DT2821-G-16SE (p. 16-23)

DT2823 (p. 16-28)

I/0 board with 16 single-ended or 8 differential analog
input (A/D) channels, 2 analog output (D/A) channels,
and 16 digital I/O lines that can be configured in groups
of 8 for either input or output.

I/0O board with 8 differential analog input (A/D) channels,
2 analog output (D/A) channels, and 16 digital I/O lines
that can be configured in groups of 8 for either input or
output.

I/O board with 8 differential analog input (A/D) channels,
2 analog output (D/A) channels, and 16 digital I/O lines
that can be configured in groups of 8 for either input or
output.

I/0 board with 16 single-ended analog input (A/D)
channels, 2 analog output (D/A) channels, and 16 digital
I/0O lines that can be configured in groups of 8 for either
input or output

I/0 board with 16 single-ended analog input (A/D)
channels, 2 analog output (D/A) channels (12-bit), and 16
digital I/O lines that can be configured in groups of 8 for
either input or output.

I/O board 4 differential analog input (A/D) channels, 2
analog output (D/A) channels, and 16 digital I/O lines
that can be configured in groups of 8 for either input or
output.

16

Data Translation

16-2

DT2824-PGH (p. 16-33)

DT2824-PGL (p. 16-37)

DT2825 (p. 16-41)

DT2827 (p. 16-46)

DT2828 (p. 16-51)

I/O board with 16 single-ended or 8 differential analog
input (A/D) channels, 2 analog output (D/A) channels,
and 16 digital I/O lines that can be configured in groups
of 8 for either input or output.

I/0 board with 16 single-ended or 8 differential analog
input (A/D) channels, 2 analog output (D/A) channels,
and 16 digital I/O lines that can be configured in groups
of 8 for either input or output.

I/0 board with 16 single-ended or 8 differential analog
input (A/D) channels, 2 analog output (D/A) channels,
and 16 digital I/O lines that can be configured in groups
of 8 for either input or output.

I/O board with 4 differential analog input (A/D) channels,
2 analog output (D/A) channels, and 16 digital I/O lines
that can be configured in groups of 8 for either input or
output.

I/0 board with 4 single-ended analog input (A/D)
channels, 2 analog output (D/A) channels, and 16 digital
I/0O lines that can be configured in groups of 8 for either
input or output.

DT2821

DT2821

The DT2821 is an I/O board with 16 single-ended or 8 differential analog input
(A/D) channels (12-bit) with a maximum sample rate of 50 kHz, 2 analog output
(D/A) channels (12-bit), and 16 digital I/O lines that can be configured in groups
of 8 for either input or output.

xPC Target supports this board with these driver blocks:
® “DT2821 Analog Input (A/D)” on page 16-3
* “DT2821 Analog Output (D/A)” on page 16-5

e “DT2821 Digital Input” on page 16-6
e “DT2821 Digital Output” on page 16-7

Board Characteristics

Board Name DT2821
Manufacturer Data Translation
Bus Type ISA

Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

DT2821 Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

16-3

1 6 Data Translation

164

Driver Block Parameters

Channel vector — If you choose Single-ended (16 channels) from the Input
coupling list, enter numbers between 1 and 16. If you choose Differential (8
channels) from the Input coupling list, enter numbers between 1 and 8. For
example, to use the first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Gain vector — Enter 1, 2, 4, or 8 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector must be the same
length as the Channel vector. (If your enter a scalar, it is automatically
expanded to channel vector). This driver allows the gain of each channel to be
different. The gain is applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and a gain of 8, the
signal is amplified -8 to +8 volts. Select a range equal or larger than the
amplified voltage. For example, select a range of +-10V. After the signal voltage
is sampled, this block divides by the gain to output the original signal value.

Range — From the list, choose either +-10V (-10 volts to +10 volts), or 0-10V (0
volts to +10 volts). This specifies the effective range which is the same for all
channels and must correspond with the input range setting on the board.

Input coupling — From the list, select one from the following list of input
modes:

® Single-ended channels (16 channels)
e Differential channels (8 channels)
This choice must correspond to the input mode setting on the board.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2821

DT2821 Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the Channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0 to +5 5

-5 to +5 -5 0to +10 10

-2.5 to +2.5 -2.5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

The range settings have to correspond to the Output Range Selection settings
on the board for DACO, and DAC1 (channel 1 and 2 respectively).

16-5

1 6 Data Translation

16-6

Sample time — Base sample time of a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP-switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2821 Digital Input

DT2821 series boards have two I/O ports, each containing 8 digital I/O lines.
These ports can be configured independently for either input or output. Use a
separate driver block for each port. By selecting the digital input driver block
for a given port, that port is configured for input.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

DT2821

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT2821 Digital Output

DT2821 series boards have two I/O ports, each containing 8 digital I/O lines.
These ports can be configured independently for either input or output. Use a
separate driver block for each port. By selecting the digital output driver block
for a given port, that port is configured for output.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

16-7

16

Data Translation

16-8

DT2821-F-8DI

The DT2821-F-8DI is an I/O board with 8 differential analog input (A/D)
channels (12-bit) with a maximum sample rate of 150 kHz, 2 analog output
(D/A) channels (12-bit), and 16 digital I/O lines that can be configured in groups
of 8 for either input or output.

xPC Target supports this board with these driver blocks:
® “DT2821-F-8DI Analog Input (A/D)” on page 16-8

e “DT2821-F-8DI Analog Output (D/A)” on page 16-10

¢ “DT2821-F-8DI Digital Input” on page 16-11

® “DT2821-F-8DI Digital Output” on page 16-12

Board Characteristics

Board Name DT2821-F-8DI
Manufacturer Data Translation
Bus Type ISA

Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

DT2821-F-8DI Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

DT2821-F-8Dl

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8. For example, to use the
first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Gain vector — Enter 1, 2, 4, or 8 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector must be the same
length as the Channel vector. (If your enter a scalar, it is automatically
expanded to channel vector). This driver allows the gain of each channel to be
different. The gain is applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and a gain of 8, the
signal is amplified -8 to +8 volts. Select a range equal or larger than the
amplified voltage. For example, select a range of +-10V. After the signal voltage
is sampled, this block divides by the gain to output the original signal value.

Range — From the list, choose either +-10V (-10 volts to +10 volts), or 0-10V (0
volts to +10 volts). This specifies the effective range which is the same for all
channels and must correspond with the input range setting on the board.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

16-9

1 6 Data Translation

16-10

DT2821-F-8DI Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the Channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0 to +5 5

-5 to +5 -5 0 to +10 10

-2.5 to +2.5 -2.5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

The range settings have to correspond to the Output Range Selection settings
on the board for DACO, and DAC1 (channel 1 and 2 respectively).

DT2821-F-8Dl

Sample time — Base sample time of a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP-switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2821-F-8DI Digital Input

DT2821-F-8DI series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital input driver
block for a given port, that port is configured for input.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

16-11

1 6 Data Translation

16-12

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT2821-F-8DI Digital Output

DT2821-F-8DI series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital output driver
block for a given port, that port is configured for output.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT12821-G-8DI

DT2821-G-8DI

The DT2821-G-8DI is an I/O board with 8 differential analog input (A/D)
channels (12-bit) with a maximum sample rate of 250 kHz, 2 analog output
(D/A) channels (12-bit), and 16 digital I/O lines that can be configured in groups
of 8 for either input or output.

xPC Target supports this board with these driver blocks:
* “DT2821-G-8DI Analog Input (A/D)” on page 16-13

¢ “DT2821-G-8DI Analog Output (D/A)” on page 16-15

¢ “DT2821-G-8DI Digital Input” on page 16-16

* “DT2821-G-8DI Digital Output” on page 16-17

Board Characteristics

Board Name DT2821-G-8DI
Manufacturer Data Translation
Bus Type ISA

Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/0O:Yes
Multiple board support Yes

DT2821-G-8DI Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

16-13

1 6 Data Translation

16-14

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8. For example, to use the
first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Gain vector — Enter 1, 2, 4, or 8 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector must be the same
length as the Channel vector. (If your enter a scalar, it is automatically
expanded to channel vector). This driver allows the gain of each channel to be
different. The gain is applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and a gain of 8, the
signal is amplified -8 to +8 volts. Select a range equal or larger than the
amplified voltage. For example, select a range of +-10V. After the signal voltage
is sampled, this block divides by the gain to output the original signal value.

Range — From the list, choose either +-10V (-10 volts to +10 volts), +-5V (-5
volts to +5 volts), or 0-10V (0 volts to +10 volts). This specifies the effective
range which is the same for all channels and must correspond with the input
range setting on the board.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT12821-G-8DI

DT2821-G-8DI Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range — Enter a range code for each of the channels in the Channel vector.
The range vector must be the same length as the Channel vector. This board
allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input range (V) Range code Input range (V) Range code
-10 to +10 -10 0 to +5 5

-5 to +5 -5 0to +10 10

-2.5 to +2.5 -2.5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

The range settings have to correspond to the Output Range Selection settings
on the board for DACO, and DAC1 (channel 1 and 2 respectively).

16-15

1 6 Data Translation

16-16

Sample time — Base sample time of a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP-switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2821-G-8DI Digital Input

DT2821-G-8DI series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital input driver
block for a given port, that port is configured for input.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

DT12821-G-8DI

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT2821-G-8DI Digital Output

DT2821-G-8DI series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital output driver
block for a given port, that port is configured for output.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

16-17

1 6 Data Translation

DT2821-F-16SE

16-18

The DT2821-F-16SE is an I/O board with 16 single-ended analog input (A/D)
channels (12-bit) with a maximum sample rate of 150 kHz, 2 analog output
(D/A) channels (12-bit), and 16 digital I/O lines that can be configured in groups
of 8 for either input or output.

xPC Target supports this board with these driver blocks:
® “DT2821-F-16SE Analog Input (A/D)” on page 16-18

* “DT2821-F-16SE Analog Output (D/A)” on page 16-20
¢ “DT2821-F-16SE Digital Input” on page 16-21

® “DT2821-F-16SE Digital Output” on page 16-22

Board Characteristics

Board Name DT2821-F-16SE
Manufacturer Data Translation
Bus Type ISA

Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

DT2821-F-16SE Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

DT2821-F-

16SE

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. For example, to use the
first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Gain vector — Enter 1, 2, 4, or 8 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector must be the same
length as the Channel vector. (If your enter a scalar, it is automatically
expanded to channel vector). This driver allows the gain of each channel to be
different. The gain is applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and a gain of 8, the
signal is amplified -8 to +8 volts. Select a range equal or larger than the
amplified voltage. For example, select a range of +-10V. After the signal voltage
is sampled, this block divides by the gain to output the original signal value.

Range — From the list, choose either +-10V (-10 volts to +10 volts), or 0-10V (0
volts to +10 volts). This specifies the effective range which is the same for all
channels and must correspond with the input range setting on the board.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

16-19

1 6 Data Translation

16-20

DT2821-F-16SE Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the Channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0 to +5 5

-5 to +5 -5 0 to +10 10

-2.5 to +2.5 -2.5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

The range settings have to correspond to the Output Range Selection settings
on the board for DACO, and DAC1 (channel 1 and 2 respectively).

DT2821-F-16SE

Sample time — Base sample time of a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP-switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2821-F-16SE Digital Input

DT2821-F-16SE series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital input driver
block for a given port, that port is configured for input.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

16-21

1 6 Data Translation

16-22

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT2821-F-16SE Digital Output

DT2821-F-16SE series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital output driver
block for a given port, that port is configured for output.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT2821-G-16SE

DT2821-G-16SE

The DT2821-G-16SE is an I/O board with 16 single-ended analog input (A/D)
channels (12-bit) with a maximum sample rate of 250 kHz, 2 analog output
(D/A) channels (12-bit), and 16 digital I/O lines that can be configured in groups
of 8 for either input or output.

xPC Target supports this board with these driver blocks:
¢ “DT2821-G-16SE Analog Input (A/D)” on page 16-23
* “DT2821-G-16SE Analog Output (D/A)” on page 16-25

* “DT2821-G-16SE Digital Input” on page 16-26
¢ “DT2821-G-16SE Digital Output” on page 16-27

Board Characteristics

Board Name DT2821-G-16SE
Manufacturer Data Translation
Bus Type ISA

Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

DT2821-G-16SE Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

16-23

1 6 Data Translation

16-24

Driver Block Parameters

Channel vector — Enter numbers between 1 and 16. For example, to use the
first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Gain vector — Enter 1, 2, 4, or 8 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector must be the same
length as the Channel vector. (If your enter a scalar, it is automatically
expanded to channel vector). This driver allows the gain of each channel to be
different. The gain is applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and a gain of 8, the
signal is amplified -8 to +8 volts. Select a range equal or larger than the
amplified voltage. For example, select a range of +-10V. After the signal voltage
is sampled, this block divides by the gain to output the original signal value.

Range — From the list, choose either +-10V (-10 volts to +10 volts), +-5V (-5
volts to +5 volts), or 0-10V (0 volts to +10 volts). This specifies the effective
range which is the same for all channels and must correspond with the input
range setting on the board.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

D12821-G-

16SE

DT2821-G-16SE Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the Channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0 to +5 5

-5 to +5 -5 0to +10 10

-2.5 to +2.5 -2.5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

The range settings have to correspond to the Output Range Selection settings
on the board for DACO, and DAC1 (channel 1 and 2 respectively).

16-25

1 6 Data Translation

16-26

Sample time — Base sample time of a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP-switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2821-G-16SE Digital Input

DT2821-G-16SE series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital input driver
block for a given port, that port is configured for input.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

DT2821-G-16SE

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT2821-G-16SE Digital Output

DT2821-G-16SE series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital output driver
block for a given port, that port is configured for output.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

16-27

1 6 Data Translation

DT2823

The DT2823 is an I/O board 4 differential analog input (A/D) channels (16-bit)
with a maximum sample rate of 100 kHz, 2 analog output (D/A) channels
(16-bit), and 16 digital I/O lines that can be configured in groups of 8 for either
input or output.

xPC Target supports this board with these driver blocks:
® “DT2823 Analog Input (A/D)” on page 16-28
® “DT2823 Analog Output (D/A)” on page 16-29

* “DT2823 Digital Input” on page 16-30
* “DT2823 Digital Output” on page 16-31

Board Characteristics

Board Name DT2823
Manufacturer Data Translation
Bus Type ISA

Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

DT2823 Analog Input (A/D)
The range for the DT2823 is -10 to + 10 volts.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

16-28

DT12823

Driver Block Parameters

Channel vector — Enter numbers between 1 and 4. For example, to use the
first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2823 Analog Output (D/A)
The range of the DT2823 is -10 to +10 volts.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the Channel vector. This
board allows the range of each channel to be different.

16-29

1 6 Data Translation

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0 to +5 5

-5 to +5 -5 0 to +10 10

-2.5 to +2.5 -2.5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

The range settings have to correspond to the Output Range Selection settings
on the board for DACO, and DAC1 (channel 1 and 2 respectively).

Sample time — Base sample time of a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP-switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2823 Digital Input

DT2823 series boards have two I/O ports, each containing 8 digital I/O lines.
These ports can be configured independently for either input or output. Use a
separate driver block for each port. By selecting the digital input driver block
for a given port, that port is configured for input.

16-30

DT12823

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual

digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts

numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT2823 Digital Output

DT2823 series boards have two I/O ports, each containing 8 digital I/O lines.
These ports can be configured independently for either input or output. Use a
separate driver block for each port. By selecting the digital output driver block
for a given port, that port is configured for output.

16-31

1 6 Data Translation

16-32

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT12824-PGH

DT2824-PGH

The DT2824-PGH is an I/O board with 16 single-ended or 8 differential analog
input (A/D) channels (12-bit) with a maximum sample rate of 50 kHz, 2 analog
output (D/A) channels (12-bit), and 16 digital I/O lines that can be configured
in groups of 8 for either input or output.

xPC Target supports this board with these driver blocks:
¢ “DT2824-PGH Analog Input (A/D)” on page 16-33

¢ “DT2824-PGH Digital Input” on page 16-35
¢ “DT2824-PGL Digital Output” on page 16-40

Board Characteristics

Board Name DT2824-PGH
Manufacturer Data Translation
Bus Type ISA

Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

DT2824-PGH Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

16-33

1 6 Data Translation

16-34

Driver Block Parameters

Channel vector — If you choose Single-ended (16 channels) from the Input
coupling list, enter numbers between 1 and 16. If you choose Differential (8
channels) from the Input coupling list, then enter numbers between 1 and 8.
For example, to use the first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Gain vector — Enter 1, 2, 4, or 8 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector must be the same
length as the Channel vector. (If your enter a scalar, it is automatically
expanded to channel vector). This driver allows the gain of each channel to be
different. The gain is applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and a gain of 8, the
signal is amplified -8 to +8 volts. Select a range equal or larger than the
amplified voltage. For example, select a range of +-10V. After the signal voltage
is sampled, this block divides by the gain to output the original signal value.

Range — From the list, choose either +-10V (-10 volts to +10 volts), or 0- 10V (0
volts to +10 volts). This specifies the effective range which is the same for all
channels and must correspond with the input range setting on the board.

Input coupling — From the list, select one from the following list of input
modes:

® Single-ended channels (16 channels)
® differential channels (8 channels)
This choice must correspond to the input mode setting on the board.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT12824-PGH

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

DT2824-PGH Digital Input

DT2824-PGH series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital input driver
block for a given port, that port is configured for input.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

16-35

1 6 Data Translation

16-36

DT2824-PGH Digital Output

DT2824-PGH series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital output driver
block for a given port, that port is configured for output.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT12824-PGL

DT2824-PGL

The DT2824-PGL is an I/O board with 16 single-ended or 8 differential analog
input (A/D) channels (12-bit) with a maximum sample rate of 50 kHz, 2 analog
output (D/A) channels (12-bit), and 16 digital I/O lines that can be configured
in groups of 8 for either input or output.

xPC Target supports this board with these driver blocks:
® “DT2824-PGL Analog Input (A/D)” on page 16-37

¢ “DT2824-PGL Digital Input” on page 16-39
¢ “DT2824-PGL Digital Output” on page 16-40

Board Characteristics

Board Name DT2824-PGL
Manufacturer Data Translation
Bus Type ISA

Access Method I/O mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

DT2824-PGL Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

16-37

1 6 Data Translation

16-38

Driver Block Parameters

Channel vector — If you choose Single-ended (16 channels) from the Input
coupling list, enter numbers between 1 and 16. If you choose Differential (8
channels) from the Input coupling list, then enter numbers between 1 and 8.
For example, to use the first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Gain vector — Enter 1, 10, 100, or 500 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector must be the same
length as the Channel vector. (If your enter a scalar, it is automatically
expanded to channel vector). This driver allows the gain of each channel to be
different. The gain is applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and a gain of 8, the
signal is amplified -8 to +8 volts. Select a range equal or larger than the
amplified voltage. For example, select a range of +-10V. After the signal voltage
is sampled, this block divides by the gain to output the original signal value.

Range — From the list, choose either +-10V (-10 volts to +10 volts), or 0- 10V (0
volts to +10 volts). This specifies the effective range which is the same for all
channels and must correspond with the input range setting on the board.

Input coupling — From the list, select one from the following list of input
modes:

® Single-ended channels (16 channels)
® differential channels (8 channels)
This choice must correspond to the input mode setting on the board.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT12824-PGL

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

DT2824-PGL Digital Input

DT2824-PGL series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital input driver
block for a given port, that port is configured for input.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

16-39

1 6 Data Translation

16-40

DT2824-PGL Digital Output

DT2824-PGL series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital output driver
block for a given port, that port is configured for output.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT12825

DT2825

The DT2825 is an I/O board with 16 single-ended or 8 differential analog input
(A/D) channels (12-bit) with a maximum sample rate of 45 kHz, 2 analog output
(D/A) channels (12-bit), and 16 digital I/O lines that can be configured in groups
of 8 for either input or output.

xPC Target supports this board with these driver blocks:
® “DT2825 Analog Input (A/D)” on page 16-41
* “DT2825 Analog Output (D/A)” on page 16-43

* “DT2825 Digital Input” on page 16-44
¢ “DT2825 Digital Output” on page 16-45

Board Characteristics

Board Name DT2825
Manufacturer Data Translation
Bus Type ISA

Access Method I/0O mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

DT2825 Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

16-41

1 6 Data Translation

16-42

Driver Block Parameters

Channel vector — If you choose Single-ended (16 channels) from the Input
coupling list, enter numbers between 1 and 16. If you choose Differential (8
channels) from the Input coupling list, then enter numbers between 1 and 8.
For example, to use the first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Gain vector — Enter 1, 10, 100, or 500 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector must be the same
length as the Channel vector. (If your enter a scalar, it is automatically
expanded to channel vector). This driver allows the gain of each channel to be
different. The gain is applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and a gain of 8, the
signal is amplified -8 to +8 volts. Select a range equal or larger than the
amplified voltage. For example, select a range of +-10V. After the signal voltage
is sampled, this block divides by the gain to output the original signal value.

Range — From the list, choose either +-10V (-10 volts to +10 volts), or 0- 10V (0
volts to +10 volts). This specifies the effective range which is the same for all
channels and must correspond with the input range setting on the board.

Input coupling — From the list, choose one of the input modes:

® Single-ended channels (16 channels)

® differential channels (8 channels)

This choice must correspond to the input mode setting on the board.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT12825

DT2825 Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the Channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0 to +5 5

-5 to +5 -5 0to +10 10

-2.5 to +2.5 -2.5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

The range settings have to correspond to the Output Range Selection settings
on the board for DACO, and DAC1 (channel 1 and 2 respectively).

16-43

1 6 Data Translation

16-44

Sample time — Base sample time of a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP-switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2825 Digital Input

DT2825 series boards have two I/O ports, each containing 8 digital I/O lines.
These ports can be configured independently for either input or output. Use a
separate driver block for each port. By selecting the digital input driver block
for a given port, that port is configured for input.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

DT12825

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT2825 Digital Output

DT2825 series boards have two I/O ports, each containing 8 digital I/O lines.
These ports can be configured independently for either input or output. Use a
separate driver block for each port. By selecting the digital output driver block
for a given port, that port is configured for output.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

16-45

1 6 Data Translation

DT2827

The DT2827 is an I/O board with 4 differential analog input (A/D) channels
(16-bit) with a maximum sample rate of 100kHz, 2 analog output (D/A)
channels (12-bit), and 16 digital I/O lines that can be configured in groups of 8
for either input or output.

xPC Target supports this board with these driver blocks:
® “DT2827 Analog Input (A/D)” on page 16-46
e “DT2827 Analog Output (D/A)” on page 16-47

® “DT2827 Digital Input” on page 16-48
® “DT2827 Digital Output” on page 16-49

Board Characteristics

Board Name DT2827
Manufacturer Data Translation
Bus Type ISA

Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/0:Yes
Multiple board support Yes

DT2827 Analog Input (A/D)
The range for this board is -10 to +10 volts.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

16-46

D12827

Driver Block Parameters

Channel vector —Enter numbers between 1 and 4. For example, to use the
first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2827 Analog Output (D/A)
The range for this board is -10 to + 10 volts.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the Channel vector. This
board allows the range of each channel to be different.

16-47

1 6 Data Translation

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0 to +5 5

-5 to +5 -5 0 to +10 10

-2.5 to +2.5 -2.5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

The range settings have to correspond to the Output Range Selection settings
on the board for DACO, and DAC1 (channel 1 and 2 respectively).

Sample time — Base sample time of a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP-switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2827 Digital Input

DT2827 series boards have two I/O ports, each containing 8 digital I/O lines.
These ports can be configured independently for either input or output. Use a
separate driver block for each port. By selecting the digital input driver block
for a given port, that port is configured for input.

16-48

D12827

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual

digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts

numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT2827 Digital Output

DT2827 series boards have two I/O ports, each containing 8 digital I/O lines.
These ports can be configured independently for either input or output. Use a
separate driver block for each port. By selecting the digital output driver block
for a given port, that port is configured for output.

16-49

1 6 Data Translation

16-50

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT12828

DT2828

The DT2828 is an I/O board with 4 single-ended analog input (A/D) channels
(12-bit) with a maximum sample rate of 100 kHz, 2 analog output (D/A)
channels (12-bit), and 16 digital I/O lines that can be configured in groups of 8
for either input or output.

xPC Target supports this board with these driver blocks:
® “DT2828 Analog Input (A/D)” on page 16-51
* “DT2828 Analog Output (D/A)” on page 16-53

* “DT2828 Digital Input” on page 16-54
¢ “DT2828 Digital Output” on page 16-55

Board Characteristics

Board Name DT2828
Manufacturer Data Translation
Bus Type ISA

Access Method I/O mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

DT2828 Analog Input (A/D)

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

16-51

1 6 Data Translation

16-52

Driver Block Parameters

Channel vector — Enter numbers between 1 and 4. For example, to use the
first and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board manufacturer starts
to number the channels with 0.

Gain vector — Enter 1, 2, 4, or 8 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector must be the same
length as the Channel vector. (If your enter a scalar, it is automatically
expanded to channel vector). This driver allows the gain of each channel to be
different. The gain is applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and a gain of 8, the
signal is amplified -8 to +8 volts. Select a range equal or larger than the
amplified voltage. For example, select a range of +-10V. After the signal voltage
is sampled, this block divides by the gain to output the original signal value.

Range — From the list, choose either +-10V (-10 volts to +10 volts), or 0-10V (0
volts to +10 volts). This specifies the effective range which is the same for all
channels and must correspond with the input range setting on the board.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT12828

DT2828 Analog Output (D/A)

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameter

Channel vector — Enter numbers between 1 and 2. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1, 2]
Number the channels beginning with 1 even if the board manufacturer starts

numbering the channels with 0.

Range vector — Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the Channel vector. This
board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0 to +5 5

-5 to +5 -5 0to +10 10

-2.5 to +2.5 -2.5

For example, if the first channel is -10 to +10 volts, and the second channel is
0 to 5 volts, enter

[-10,5]

The range settings have to correspond to the Output Range Selection settings
on the board for DACO, and DAC1 (channel 1 and 2 respectively).

16-53

1 6 Data Translation

16-54

Sample time — Base sample time of a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP-switch settings on the board. For example, if the
base address is 300 (hexadecimal), enter

0x300

DT2828 Digital Input

DT2828 series boards have two I/O ports, each containing 8 digital I/O lines.
These ports can be configured independently for either input or output. Use a
separate driver block for each port. By selecting the digital input driver block
for a given port, that port is configured for input.

Scaling of Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines the number of
digital lines you use.

For example, to use all of the digital inputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

DT12828

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

DT2828 Digital Output

DT2828 series boards have two I/O ports, each containing 8 digital I/O lines.
These ports can be configured independently for either input or output. Use a
separate driver block for each port. By selecting the digital output driver block
for a given port, that port is configured for output.

Scaling of Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Driver Block Parameters
Port — From the list, choose 1 or 2.

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
corresponds to the DIP-switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

16-55

1 6 Data Translation

16-56

Diamond

1/0 Boards supported by xPC Target (http://www.diamondsystems.com).

Diamond-MM (p. 17-3)

Diamond-MM-16-AT (p. 17-9)

Diamond-MM-32-AT (p. 17-15)

Garnet-MM (p. 17-25)

Onyx-MM (p. 17-28)

Onyx-MM-DIO (p. 17-31)

Prometheus (p. 17-34)

Quartz-MM 5 (p. 17-40)

DAS16 compatible I/O board with 16 single or 8
differential analog input (A/D) channels, 2 analog output
(D/A) channels, 8 digital input lines, and 8 digital output
lines.

PC104 I/O board with 16 single-ended or 8 differential
analog input (A/D) channels (16-bit), 4 optional analog
output (D/A) channels (12-bit), 8 digital input and output
lines.

PC104 I/O board with 32 single or 16 differential analog
input (A/D) channels, 4 analog output (D/A) channels, 24
digital input and output lines.

I/0 board with 24 or 48 high current digital I/O lines that
can be configured in groups of eight for either digital input
or digital output.

I/0 board with 48 digital I/O lines that can be configured
in groups of 8 for either digital input or digital output,
counters, and timers.

I/0 board with 48 digital I/O lines that can be configured
in groups of eight for either digital input or digital output.

Intel 486-based embedded PC/104 CPU board with 4
serial ports, 2 USB ports, 1 parallel port, keyboard and
mouse ports, floppy and IDE driver connectors, a
100BaseT Ethernet connector, and provision for solid
state flashdisk modules.

8 digital input lines, 8 digital output lines, and 10
counter/timers.

17

Diamond

17-2

Quartz-MM 10 (p. 17-52)

Ruby-MM (p. 17-63)

Ruby-MM-416 (p. 17-68)

Ruby-MM-1612 (p. 17-73)

8 digital input line, 8 digital output lines, and 10
counter/timers.

PC104 I/0 board with 4 or 8 single analog output (D/A)
channels, unipolar and bipolar operation, +/- 10V, +/- 5V,
0-10V, 0-5V fixed ranges, +/- 2.5V, 0-2.5V user-adjustable
ranges, 24 digital input and output lines.

4 16-bit analog output (D/A) channels, and 24 digital I/O

lines that can be configured in groups of 8 for either input
or output.

16 12-bit analog output (D/A) channels, and 24 digital I/O

lines which can be configured in groups of 8 for either
input or output.

Diamond-MM

Diamond-MM

The Diamond-MM is a DAS16 compatible I/O board with 16 single or 8
differential analog input (A/D) channels (12-bit) with a maximum sample rate
or 100 kHz, 2 analog output (D/A) channels (12-bit), 8 digital input lines, and 8
digital output lines.

xPC Target supports this board with these driver blocks:
¢ “MM Analog Input (A/D)” on page 17-3

¢ “MM Analog Output (D/A)” on page 17-5

® “MM Digital Input” on page 17-7

¢ “MM Digital Output” on page 17-7

Board Characteristics

Board name Diamond-MM

Manufacturer Diamond Systems Corporation
Bus type ISA (PC/104)

Access method I/O mapped

Multiple block instance support No
Multiple board support Yes

MM Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

17-3

1 7 Diamond

17-4

Driver Block Parameters

Number of channels — If you select 16 channels (Coupling parameter set to
16 single-ended channels) enter a number between 1 and 16 to select the
number of single A/D channels used. If you select eight channels (Coupling
parameter set to 8 differential channels) enter a number between 1 and 8.

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Note, you cannot select the starting channel for this block, you can only select
the number of channels. This block works differently from the
Diamond-MM-32-AT A/D block, where you can specify the starting channel.

Range — Enter an input range code for all A/D channels. This driver does not
allow the selection of a different range for each channel. The input range is the
same for all A/D channels.

The following table is a list of the ranges for this driver and the corresponding
range codes.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0 to +10 10

-5 to +5 -5 0 to +5 5
-2.5t0+2.5 -2.5 0 to +2 2

-1to+1 -1 0to+1 1

-0.5 to +0.5 -5

The gain jumpers on the board have to be in the correct positions for the chosen
range.The bipolar jumper on the board has to be in the bipolar position, if a
bipolar range is used or in the unipolar position, when a unipolar range is used.

Coupling — From the list, select one from the following list of input modes:

® 16 single-ended channels
® 8 differential channels

This choice must correspond to the jumper setting in block J6 on the board.

Diamond-MM

Show error status output (E) — Select this check box to add a port labeled E
to the block and to display (the contents of) that special port. This output will
always have a value of 0 unless a problem is detected while attempting an A/D
conversion. In the unlikely event that an error occurs, the port has a nonzero
value. This nonzero value takes the form of a real number whose binary
representation of 1’s and 0’s (true and false) indicates which channels have
errors.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

MM Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — This parameter is a combined Channel vector and Range
vector. The number of elements defines the number of D/A channels used.

Range vector — Enter a range code for each of the D/A channels used. This
driver allows a different range for each channel with a maximum of 2 channels.

17-5

1 7 Diamond

17-6

The following table is a list of the ranges for this driver and the corresponding
range codes. The D/A specific jumpers on the board have to be in the correct
positions for the ranges entered.

Input Range (V) Range Code

0 to +10 10
0to+5 5

For example, if the first channel is 0 to + 10 volts and the second channel is 0
to +5 volts, enter

[10,5]

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values for the input channels. Enter a scalar or a vector that is the same length
as the channel vector. If you specify a scalar value, that value is the initial
value for all channels. The channels are set to the initial values between the
time the model is downloaded and the time it is started. If you provide an
out-of-range value for a channel, that value is adjusted to lie within the correct
range, as defined in the parameter Range.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Diamond-MM

MM Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital input channels in any order. The number of
elements defines the number of digital input channels you use. For example, to
use all the digital input channels, enter

[1:8]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

MM Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 = TTL high

17-7

1 7 Diamond

17-8

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital input channels in any order. The number of
elements defines the number of digital input channels you use. For example, to
use all the digital output channels, enter

[1:8]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values for the input channels. Enter a scalar or a vector that is the same length
as the channel vector. If you specify a scalar value, that value is the initial
value for all channels. The channels are set to the initial values between the
time the model is downloaded and the time it is started. If you provide an
out-of-range value for a channel, that value is adjusted to lie within the correct
range, as defined in the parameter Range.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Diamond-MM-16-AT

Diamond-MM-16-AT

The Diamond MM-AT is a PC104 I/O board with 16 single-ended or 8
differential analog input (A/D) channels (16-bit), 4 optional analog output (D/A)
channels (12-bit), 8 digital input and output lines.

xPC Target supports this board with these driver blocks:
® “MM-16-AT Analog Input (A/D)” on page 17-10

e “MM-16-AT Analog Output (D/A)” on page 17-11

® “MM-16-AT Digital Input” on page 17-12

¢ “MM-16-AT Digital Output” on page 17-13

xPC Target does not support the counters/timers on this board.

Board Characteristics

Board name Diamond-MM-16-AT
Manufacturer Diamond Systems Corporation
Bus type ISA (PC/104)

Access method I/0 mapped

Multiple block instance support No
Multiple board support Yes

17-9

1 7 Diamond

17-10

MM-16-AT Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

First Channel — Enter the number of the first channel in a set of contiguous
analog input channels. Depending on the channel configuration selected, the
first channel number must lie within the range 1 through 8 (Coupling
parameter set to 8 differential channels) or 1 through 16 (Coupling
parameter set to 16 single-ended channels).

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Number of Channels — Enter the number of input channels you want to use.
The maximum number of channels varies between 1 and 16 and depends on the
values of Coupling and the First channel number.

Range — From the list, choose a voltage range. The input range applies to all
channels.

Coupling — From the list, select one from the following list of input modes:

¢ Single-ended (16 channels)
¢ Differential (8 channels)

This choice must correspond to the jumper setting in block J4 on the board.

Show error status output (E) — Select this check box to add a port labeled E
to the block and to display (the contents of) that special port. This output will
always have a value of 0 unless a problem is detected while attempting an A/D
conversion. In the unlikely event that an error occurs, the port has a nonzero
value. This nonzero value takes the form of a real number whose binary
representation of 1’s and 0’s (true and false) indicates which channels have
errors.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Diamond-MM-

16-AT

Base address — Enter the base address of the board. This entry must
correspond to the base address DIP switch settings on the board. For example,
if the base address is 300 (hexadecimal), enter

0x300

MM-16-AT Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

Channel vector — Enter numbers between 1 and 4. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range — From the list, select 0 to 5V or -5V to 5V as the input voltage range
of the board. The input range applies to all channels.

This choice must correspond to the jumper setting in block J5 on the board.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

17-11

1 7 Diamond

17-12

Initial value vector — The initial value vector contains the initial voltage
values for the input channels. Enter a scalar or a vector that is the same length
as the channel vector. If you specify a scalar value, that value is the initial
value for all channels. The channels are set to the initial values between the
time the model is downloaded and the time it is started. If you provide an
out-of-range value for a channel, that value is adjusted to lie within the correct
range, as defined in the parameter Range.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the base address DIP switch settings on the board. For example,
if the base address is 300 (hexadecimal), enter

0x300

MM-16-AT Digital Input
Diamond-MM-16-AT boards have an 8-bit digital input port.

Scaling Input to Output

Hardware Output Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital input channels in any order. The number of
elements defines the number of digital input channels you use. For example, to
use all the digital input channels, enter

[1:8]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Diamond-MM-

16-AT

Base address — Enter the base address of the board. This entry must
correspond to the base address DIP switch settings on the board. For example,
if the base address is 300 (hexadecimal), enter

0x300

MM-16-AT Digital Output
Diamond-MM-16-AT boards have an 8-bit digital output port.

Scaling Input to Output

Hardware Output Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8. This driver allows the
selection of individual digital output channels in any order. The number of
elements defines the number of digital output channels you use. For example,
to use all of the digital output channels, enter

[1:8]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

17-13

1 7 Diamond

17-14

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between
the time the model is downloaded and the time it is started. If you provide an
out-of-range value for a channel, that value is adjusted to lie within the correct
range, as defined in the parameter Range.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the base address DIP switch settings on the board. For example,
if the base address is 300 (hexadecimal), enter

0x300

Diamond-MM-32-AT

Diamond-MM-32-AT

The Diamond-MM-32-AT is a PC104 I/O board with 32 single or 16 differential
analog input (A/D) channels (16-bit) with a maximum sample rate of 200 kHz,
4 analog output (D/A) channels (12-bit), 24 digital input and output lines.

xPC Target supports this board with these driver blocks:

® “MM-32-AT Analog Input (A/D)” on page 17-16

e “MM-32-AT Frame Analog Input (A/D)” on page 17-17
o “MM-32-AT Analog Output (D/A)” on page 17-20

e “MM-32-AT Digital Input” on page 17-21

e “MM-32-AT Digital Output” on page 17-22

Board Characteristics
Board name
Manufacturer

Bus type

Access method

Multiple block instance support

Multiple board support

Diamond-MM-32-AT

Diamond Systems Corporation
ISA (PC/104)

I/0 mapped

A/D:No
D/A:Yes
DIO:Yes

Yes

17-15

1 7 Diamond

17-16

MM-32-AT Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Output Data Type Scaling

Volts Double 1

Driver Block Parameters

Channel configuration — From the list, select the following. Refer to the
Diamond-MM-32-AT documentation for a description of the configuration
modes.

® 1-32 SE to select the configuration mode labeled A (32 single-ended input
channels)

® 1-16 DI to select the configuration mode labeled B (16 differential input
channels)

® 1-8SE 9-16 DI 17-24 SE to select the configuration mode labeled D (eight
single-ended input channels labeled 1 through 8, eight differential input
channels labeled 9 through 16, and an additional eight single-ended input
channels labeled 17 through 24).

Note that the selected channel configuration must match the configuration set
by the jumpers in block J5. This driver does not support mode C.

First channel number — Enter the number of the first channel in a set of
contiguous channels. Depending on the value of the Channel Configuration
parameter, the first channel number must lie within the range 1 through 32, 1
through 16, or 1 through 24.

Number of channels — Enter the number of input channels you want to use.
The maximum number of channels varies between 1 and 32 and depends on
Channel configuration and the First channel number.

Range — From the list, choose a voltage range. The input range applies to all
channels.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Diamond-MM-32-AT

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

MM-32-AT Frame Analog Input (A/D)

The Diamond-MM-32-AT Frame Analog Input block is a frame-based one. A
frame consists of a fixed number of samples (defined by the Number of scans
per frame parameter) for each of a specified set of channels. A scan is a group
of samples, one for each channel.

Normally, the system timer controls an xPC Target model at intervals specified
by the block Sample Time parameter. In contrast, the Diamond-MM-32-AT
Frame Analog Input block executes the model in which it occurs each time it
converts a new frame of data. You control this rate with the parameter values
Interval between scans and Number of scans per frame:

Rate = (Interval between scans) x (Number of scans per frame)

You control the frame size with the parameter values Number of channels
and Number of scans per frame:

frameSize = (Number of channels) x (Number of scans per frame)

After the block assembles a frame of data, it generates an interrupt, which
triggers the next iteration of the model.

Note, after you add this block to a model and are ready to configure the model,
edit the xPC Target code generation options.

1 From the model, select Simulation -> Configuration Parameters.
2 Select the Real-Time Workshop node.

3 In the Target selection section, from the RTW system target file list,
browse to and select xpctarget.tlc.

4 In the xPC Target options node, from the I/O board generating the
interrupt list, select the value Diamond-MM-32. This specifies that the
Diamond-MM-32-AT board generates the interrupt.

17-17

1 7 Diamond

17-18

5 In the same node, from the Real-time interrupt source list, select the IRQ
number you have jumpered on the board.

6 In the same node, for the PCI slot/ISA base address parameter, enter the
same ISA address as for the Diamond-MM-32-AT Frame block Base
address parameter.

7 Click OK and save the model.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling

Volts Double 1

Driver Block Parameters

Channel configuration — From the list, select the following. Refer to the
Diamond-MM-32-AT documentation for a description of the configuration
modes.

® 1-32 Single-Ended to select the configuration mode labeled A (32
single-ended input channels)

® 1-16 Differential to select the configuration mode labeled B (16
differential input channels)

® 1-8 and 7-24 Single-Ended; 9-16 Differential to select the
configuration mode labeled D (eight single-ended input channels labeled 1
through 8, eight differential input channels labeled 9 through 16, and an
additional eight single-ended input channels labeled 17 through 24).

Note that the selected channel configuration must match the configuration set
by the jumpers in block J5. This driver does not support mode C.

Output Signal Type — From the list, select either Vector or Frame:

® Vector — Select Vector if you expect the output signal from this block to be
the input signal for an xPC Target scope or some other block that requires
vector input.

Diamond-MM-32-AT

® Frame — Select Frame if you expect the output signal from this block to be
the input signal for a block that requires a frame. For example, a Signal
Processing block.

Range — From the list, select a voltage range. The input range applies to all
channels.

First channel number — Enter the number of the first channel in a set of
contiguous channels. Depending on the value of the Channel Configuration
parameter, the first channel number must lie within the range 1 through 32, 1
through 16, or 1 through 24.

Number the channels starting from 1 even if Diamond Systems numbers them
starting from 0.

Number of channels — Enter the number of input channels you want to use.
The maximum number of channels varies between 1 and 32 and depends on
Channel configuration and the First channel number. Note that hardware
limitations require that either the Number of channels or Number of scans
per frame value be even. If your application requires that both quantities be
odd, add 1 to one of them and ignore the resulting additional data.

Number of scans per frame — Enter the number of scans per frame. For a
value of N, each output port of the block will have a signal width of N and
contain N samples of the corresponding channel. Note that hardware
limitations require that either the Number of channels or Number of scans
per frame value be even. If your application requires that both quantities be
odd, add 1 to one of them and ignore the resulting additional data.

Interval between conversions within a scan — From the list, select the
interval, in microseconds, between conversions within a scan.

Interval between scans — Enter the interval, in seconds, between successive
scans.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

17-19

1 7 Diamond

17-20

MM-32-AT Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

Volts Double 1

Driver Block Parameters

Channel vector — Enter numbers between 1 and 4. This driver allows the
selection of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use the first and
second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range — From the list, choose a range code. This driver does not allow a
different range for each of the four channels. This selection must correspond to
the range and bipolar/unipolar jumper settings on the board.

The following table is a list of the ranges for this driver and the corresponding
range codes. The D/A specific jumpers on the board must be in the correct
positions for the ranges entered.

Input Range (V) Range Code Input Range (V) Range Code
-10 to +10 -10 0 to +10 10
-5 to +5 -5 0 to +5 5

For example, if the first and second channel range is 0 to + 10 volts, enter

[10, 10]

Diamond-MM-32-AT

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between
the time the model is downloaded and the time it is started.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

MM-32-AT Digital Input
The Diamond-MM-32-AT has one 8255 chip with three ports (A,B,C). Each port

has a maximum of 8 digital I/O lines that can be configured as inputs or
outputs.

Use a separate driver block for each port. By selecting the digital input driver
block, you configure the port as input.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

17-21

1 7 Diamond

17-22

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines used with this port. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital inputs for one port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Port — From the list choose A, B, or C. The I/O board has an 8255 chip with
three ports. The Port parameter defines which port of the 8255 chip is used for
this driver block. Each port has a maximum of eight digital lines that you can
configure as inputs or outputs depending on which driver block is chosen. In
each case, one block is needed for each port.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

MM-32-AT Digital Output

The Diamond-MM-32-AT has one 8255 chip with three ports (A,B,C). Each port
has a maximum of eight digital I/O lines that you can configure as inputs or
outputs.

Use a separate driver block for each port. By selecting the digital output driver
block, you can configure the port as output.

Diamond-MM-32-AT

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital output
lines used with this port. This driver allows the selection of individual digital
output lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital outputs for one port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Port — From the list choose either A, B, or C. The I/O board has an 8255 chip
with three ports. The Port parameter defines which port of the 8255 chip is
used for this driver block. Each port has a maximum or eight digital lines that
can be configured as inputs or outputs depending on which driver block is
chosen. In each case, one block is needed for each port.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial values (0 or
1) of the output channels. Enter a scalar or a vector that is the same length as
the channel vector. If you enter a scalar, that value is used for all channels. The
channels are set to these initial values between the time the model is
downloaded and the time it is started.

Sample time — Enter a base sample time or a multiple of the base sample
time.

17-23

1 7 Diamond

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

17-24

Garmnet-MM

Garnet-MM

The Garnet-MM is an I/O board with 24 or 48 high current digital I/O lines that
can be configured in groups of eight for either digital input or digital output.
There are two versions of this board, 24 (GMM-24) or 48 (GMM-48) digital I/O
lines. The 48 line version has two 82C55 chips. Each chip has three 8-bit I/O
ports for a total of 48 lines. The 24 line version has one 82C55 chip with three
8-bit I/O ports for a total of 24 lines.

xPC Target supports this board with these driver blocks:

® “Garnet-MM Digital Input” on page 17-25
¢ “Garnet-MM Digital Output” on page 17-26

Board Characteristics

Board name Garnet-MM

Manufacturer Diamond Systems Corporation
Bus type ISA (PC/104)

Access method I/O mapped

Multiple block instance support DIO: Yes
Multiple board support Yes

Garnet-MM Digital Input

Each chip port of the Garnet-MM board can be configured independently for
either input or output. Use a separate driver block for each port. Select the
digital output driver block for a given port to configure the port for output.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

17-25

1 7 Diamond

17-26

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines used with this port. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital inputs for the current port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts

numbering the lines with 0.

Port — From the list choose A, B, or C.

Chip — From the list choose 1 or 2. Note, only select 1 for the 24 line version
of the Garnet-MM board. Selecting 2 for the 24 line board has no effect. You can
select either 1 or 2 for the 48 line version of the board.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the base address board setting. For example, if the base address
is 300 (hexadecimal), enter

0x300

Garnet-MM Digital Output

Each chip port of the Garnet-MM board can be configured independently for
either input or output. Use a separate driver block for each port. Select the
digital input driver block for a given port to configure the port for input.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Garmnet-MM

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital output
lines used with this port. This driver allows the selection of individual digital
output lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital outputs for the current port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Port — From the list choose A, B, or C.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial values (0 or
1) of the output channels. Enter a scalar or a vector that is the same length as
the channel vector. If you enter a scalar, that value is used for all channels. The
channels are set to these initial values between the time the model is
downloaded and the time it is started.

Chip — From the list choose 1 or 2. Note, only select 1 for the 24 line version
of the Garnet-MM board. Selecting 2 for the 24 line board has no effect. You can
select either 1 or 2 for the 48 line version of the board.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the base address board setting. For example, if the base address
is 300 (hexadecimal), enter

0x300

17-27

1 7 Diamond

Onyx-MM

17-28

The Onyx-MM is an I/O board with 48 digital I/O lines that can be configured
in groups of eight for either input or output. xPC Target does not support the
Counter/Timer functionality of this board.

xPC Target supports this board with these driver blocks:
® “Onyx-MM Digital Input” on page 17-28
® “Onyx-MM Digital Output” on page 17-29

Board Characteristics

Board name Onyx-MM

Manufacturer Diamond Systems Corporation
Bus type ISA (PC/104)

Access method I/0 mapped

Multiple block instance support DIO: Yes
Multiple board support Yes

Onyx-MM Digital Input

Onyx-MM boards have two digital I/O chips, each with three 8-bit digital I/O
ports, for a total of 48 I/O lines. Each port can be configured independently for
either input or output. Use a separate driver block for each port. Select the
digital input driver block for a given port to configure the port for input.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Onyx-MM

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines used with this port. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital inputs for the current port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts

numbering the lines with 0.

Port — From the list choose A, B, or C.

Chip — From the list choose 1 or 2.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the base address board setting. For example, if the base address
is 300 (hexadecimal), enter

0x300

Onyx-MM Digital Output

Onyx-MM boards have two digital I/O chips, each with three 8-bit digital I/O
ports, for a total of 48 I/0 lines. Each port can be configured independently for
either input or output. Use a separate driver block for each port. Select the
digital output driver block for a given port to configure a port for output.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

17-29

1 7 Diamond

17-30

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital output
lines used with this port. This driver allows the selection of individual digital
output lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital outputs for the current port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Port — From the list choose A, B, or C.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial values (0 or
1) of the output channels. Enter a scalar or a vector that is the same length as
the channel vector. If you enter a scalar, that value is used for all channels. The
channels are set to these initial values between the time the model is
downloaded and the time it is started.

Chip — From the list choose 1 or 2.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the base address board setting. For example, if the base address
is 300 (hexadecimal), enter

0x300

Onyx-MM-DIO

Onyx-MM-DIO
The Onyx-MM is an I/O board with 48 digital I/O lines that can be configured
in groups of eight for either digital input or digital output.
xPC Target supports this board with these driver blocks:

® “Onyx-MM-DIO Digital Input” on page 17-31
® “Onyx-MM-DIO Digital Output” on page 17-32

Board Characteristics

Board name Onyx-MM-DIO

Manufacturer Diamond Systems Corporation
Bus type ISA (PC/104)

Access method I/0 mapped

Multiple block instance support DIO: Yes
Multiple board support Yes

Onyx-MM-DIO Digital Input

Onyx-MM-DIO boards have two digital I/O chips, each with three 8-bit digital
I/O ports, for a total of 48 I/O lines. Each port can be configured independently
for either input or output. Use a separate driver block for each port. Select the
digital input driver block for a given port to configure the port for input.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

17-31

1 7 Diamond

17-32

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines used with this port. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital inputs for the current port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts

numbering the lines with 0.

Port — From the list choose A, B, or C.

Chip — From the list choose 1 or 2.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the base address board setting. For example, if the base address
is 300 (hexadecimal), enter

0x300

Onyx-MM-DIO Digital Output

Onyx-MM-DIO boards have two digital I/O chips, each with three 8-bit digital
I/0 ports, for a total of 48 I/O lines. Each port can be configured independently
for either input or output. Use a separate driver block for each port. Select the
digital output driver block for a given port to configure a port for output.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Onyx-MM-DIO

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital output
lines used with this port. This driver allows the selection of individual digital
output lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital outputs for the current port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Port — From the list choose A, B, or C.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial values (0 or
1) of the output channels. Enter a scalar or a vector that is the same length as
the channel vector. If you enter a scalar, that value is used for all channels. The
channels are set to these initial values between the time the model is
downloaded and the time it is started.

Chip — From the list choose 1 or 2.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the base address board setting. For example, if the base address
is 300 (hexadecimal), enter

0x300

17-33

1 7 Diamond

Prometheus

17-34

The Diamond Prometheus is an Intel 486-based embedded PC/104 CPU board
with 4 serial ports, 2 USB ports, 1 parallel port, keyboard and mouse ports,
floppy and IDE driver connectors, a 100BaseT Ethernet connector, and
provision for solid state flashdisk modules.

xPC Target supports Model PR-Z32-EA of Prometheus. In addition to the above
functionality, Model PR-Z32-EA also contains a data acquisition subsystem.
This subsystem supports 16 single-ended or 8 differential 16-bit A/D, 4 12-bit
analog outputs, 24 programmable digital I/O channels, and a 16-bit
counter/timer.

xPC Target supports the Prometheus model PR-Z32-EA with four driver
blocks:

® “Prometheus Analog Input (A/D)” on page 17-35

® “Prometheus Analog Output (D/A)” on page 17-36
® “Prometheus Digital Input” on page 17-37

¢ “Prometheus Digital Output” on page 17-38

xPC Target does not support the counter/timer on this board.

Board Characteristics

Board name Prometheus
Manufacturer Diamond Systems
Bus type ISA

Access method I/O mapped

Multiple block instance support A/D: No, D/A: No, Digital I/O: Yes
Multiple board support No

Prometheus

Prometheus Analog Input (A/D)

Scaling Input to Output

Hardware Input Block Output Data Type Scaling

volts Double 1

Driver Block Parameters

First channel — Enter the number of the first channel in a set of contiguous
channels. Depending on the channel configuration selected, the first channel
number must lie within the range:

¢ 1 through 8, if the input coupling is differential.
¢ 1 through 16, if the input coupling is single-ended.

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Number of channels — Enter the number of input channels you want to use.
The maximum number of channels varies between 1 and 16 and depends on the
values of First channel and Input coupling. For example, if the value of First
channel is 1 and Input coupling is Single-ended, the maximum value for
Number of channels is 16.

Range (J13 setting) — From the list, choose a voltage range. The input range
applies to all channels. This range must agree with jumper settings in block
J13 on the board.

Input coupling (J13 setting) — From the list, select one from the following list
of input modes:

¢ Single-ended (16 channels)
¢ Differential (8 channels)

This choice must correspond to the jumper setting in block J13 on the board.

17-35

1 7 Diamond

17-36

Show error status output port — Select this check box to display real-time
error information. This check box displays an output port labeled E. As long as
no error is detected on any of the channels currently in use, this signal has a
value of 0. Values of 1, 2, 4, 8, and so forth respectively indicate problems on
channels 1, 2, 3, 4, and so forth. To use one signal to indicate errors on multiple
channels, the driver combines these values. For example, the Evalue1+2=3
encodes the concurrent errors on channels 1 and 2, the value 2 + 4 = 6 encodes
the concurrent errors on channels 2 and 3, and so on.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the base address setting on the board. For example, if the
base address is 280 (hexadecimal), enter

0x280

Prometheus Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

volts Double 1

Driver Block Parameters

Channel Vector — Enter a vector of numbers between 1 and 4. This driver
allows the selection of individual D/A channels in any order. The number of
elements defines the number of D/A channels used. For example, to use the
first and second analog output (D/A) channels, enter

(1,2]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range — From the list, choose a voltage range. The output range applies to all
channels. This range must agree with jumper settings in block J13 on the
board.

Prometheus

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between
the time the model is downloaded and the time it is started.

If you provide an out-of-range value for a channel, that value is adjusted to lie
within the correct range, as defined in the parameter Range.

Show error status output port — Select this check box to display real-time
error information. This check box displays an output port labeled E. As long as
no error is detected on any of the channels currently in use, this signal has a
value of 0. Values of 1, 2, 4, 8, and so forth respectively indicate problems on
channels 1, 2, 3, 4, and so forth. To use one signal to indicate errors on multiple
channels, the driver combines these values. For example, the Evalue1+2=3
encodes the concurrent errors on channels 1 and 2, the value 2 + 4 = 6 encodes
the concurrent errors on channels 2 and 3, and so on.

Sample time — Base sample time of a multiple of the base sample time.

Base address — Enter the base address of the board. It is important that this
entry correspond to the DIP switch settings on the board. For example, if the
base address is 280 (hexadecimal), enter

0x280

Prometheus Digital Input

Prometheus boards have three I/O ports, each containing 8 digital I/O lines.
You can independently configure these ports for either input or output. Use a
separate driver block for each port. By selecting the digital input driver block
for a given port, that port is configured for input.

17-37

1 7 Diamond

17-38

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel Vector — Enter a vector of numbers between 1 and 8 to select the
digital input lines used from this port. This driver allows the selection of
individual digital input lines in any order. The number of elements defines the
number of digital lines used. For example, to use all of the digital inputs for the
current port, enter

[1:8]

Number the lines starting with 1 even if the board manufacturer starts
numbering them with 0.

Port — From the list, choose A, B, or C to choose one of the three I/O ports.
Sample time — Enter a base sample time or a multiple of the base sample time

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For example, if the
base address is 280 (hexadecimal), enter

0x280

Prometheus Digital Output

Prometheus boards have three I/O ports, each containing 8 digital I/O lines.
You can independently configure these ports for either input or output. Use a
separate driver block for each port. By selecting the digital output driver block
for a given port, that port is configured for output.

Prometheus

Scaling Input to Output

Hardware Block Output Data Type Scaling
Input

TTL Double TTL low = 0.0TTL high = 1.0

Driver Block Parameters

Channel Vector — Enter a vector of numbers between 1 and 8 to select the
digital output lines used from this port. This driver allows the selection of
individual digital output lines in any order. The number of elements defines
the number of digital lines used. For example, to use all of the digital outputs
for the current port, enter

[1:8]

Number the lines starting with 1 even if the board manufacturer starts
numbering them with 0.

Port — From the list, choose A, B, or C to choose one of the three I/O ports.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between
the time the model is downloaded and the time it is started.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For example, if the
base address is 280 (hexadecimal), enter

0x280

17-39

1 7 Diamond

Quartz-MM 5

The Quartz-MM 5 has 8 digital input lines, 8 digital output lines, and 10
counter/timers.

xPC Target supports this board with these driver blocks:
® “Quartz-MM 5 Digital Input” on page 17-41

® “Quartz-MM 5 Digital Output” on page 17-42

® “Quartz-MM5 Counter PWM” on page 17-43

® “Quartz-MM5 Counter PWM & ARM” on page 17-44

® “Quartz-MM5 Counter FM” on page 17-46

¢ “Quartz-MM5 Counter FM & ARM” on page 17-47

® “Quartz-MM5 PWM Capture” on page 17-49

® “Quartz-MM5 FM Capture” on page 17-50

® “Quartz-MMxx” on page 17-51

Board Characteristics

Board name Quartz-MM 5

Manufacturer Diamond Systems Corporation
Bus type ISA (PC/104)

Access method I/0 mapped

Multiple block instance support
Multiple board support Yes

17-40

Quartz-MM 5

Quartz-MM 5 Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines used with this port. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all of the digital inputs for one port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

17-41

1 7 Diamond

17-42

Quartz-MM 5 Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines used with this port. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all of the digital inputs for one port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MM 5

Quartz-MM5 Counter PWM

The Quartz-MMS5 has one AM9513A chip with 5 counters.

The Quartz-MM5 PWM driver programs the AM9513A for PWM (Pulse Width
Modulation) signal generation (a square wave with fixed frequency and
variable duty cycle). The block has one input which defines the variable duty

cycle between 0 and 1. For the corresponding counter channel, the PWM signal
is output at the pin named OUT.

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
TTL Double Otol

Driver Block Parameters

Counter — From the list, choose 1, 2, 3, or 4 to select which counter is used
with this driver block. In each case, one block is needed for each counter.

Frequency base — From the list, choose F1=1MHz, F2=100kHz, F3=10kHz,
F4=1kHz, or F5=100Hz to set the base frequency. The XTAL frequency is
assumed to be 1MHz, therefore the jumper on the CIO-CTRO05 has to be in
position 1MHz not 5MHz.

Relative output frequency — Enter a value between 0 and .25*Frequency
base. The Relative output frequency is multiplied by the Frequency base to
set the fixed output frequency of the PWM-signal.

For example, if the output frequency of a square wave has to be 17.5 kHz, then
choose F2=100kHz as the Frequency Base and enter 0.175 as the Relative
Output Frequency. 100kHz x 0.175 = 17.5 kHz

Note Your control over the output frequency is not always precise. See
“PWM and FM Driver Block Notes” on page 1-8 for details.

Level sequence of square wave — From the list, choose either high-low or
low-high:

17-43

1 7 Diamond

17-44

¢ Ifyou choose high-low, the square wave period starts with the TTL high part
followed by the TTL low part.

¢ Ifyou choose low-high, the square wave period starts with the TTL low part
followed by the TTL high part.

In either case, the duty cycle entering the block defines the duration of the TTL
high part.

Level when disarmed — From the list, choose either high or low. The counter
is automatically disarmed when the target application is not running and gets
armed when the application begins running. This parameter sets the TTL level
when the counter is disarmed.

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(Duty Cycle)

Base address — Enter the base address of the board. This entry must
corresponds to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MM5 Counter PWM & ARM
The Quartz-MMS5 has one AM9513A chip with 5 counters.

The Quartz-MM5 PWM & ARM driver programs the AM9513A for PWM or
disarmed signal generation (a square wave with fixed frequency and variable
duty cycle). Additionally the driver allows to arm and disarm the counter by the
second block input. For the corresponding counter channel, the PWM signal is
output at the pin named OUT.

Quartz-MM 5

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
TTL Duty cycle: Double Oto1l
Arm: Double <0.5 disarmed
>0.5 armed

Driver Block Parameters

Counter — From the list, choose 1, 2, 3, 4, or 5 to select which counter is used
with this driver block. In each case, one block is needed for each counter.

Frequency base — From the list, choose F1=1MHz, F2=100kHz, F3=10kHz,
F4=1kHz, or F5=100Hz to set the base frequency. The XTAL frequency is
assumed to be 1MHz, therefore the jumper on the CIO-CTRO05 has to be in
position 1IMHz not 5MHz.

Relative output frequency — Enter a value between 0 and .25*Frequency
base. The Relative output frequency is multiplied by the Frequency base to
set the fixed output frequency of the PWM-signal.

For example, if the output frequency of a square wave has to be 17.5 kHz, then
choose F2=100kHz as the Frequency Base and enter 0.175 as the Relative
Output Frequency. 100kHz x 0.175 = 17.5 kHz

Level sequence of square wave — From the list, choose either high-low or
low-high:

¢ Ifyou choose high-1low, the square wave period starts with the TTL high part
followed by the TTL low part.

¢ If you choose low-high, the square wave period starts with the TTL low part
followed by the TTL high part.

In either case, the duty cycle entering the block defines the duration of the TTL
high part.

Level when disarmed — From the list, choose either high or low. The counter
is automatically disarmed when the target application is not running. If the
application is running, the second input port controls whether the counter is
armed or disarmed. This parameter sets the TTL level when the counter is
disarmed.

17-45

1 7 Diamond

17-46

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(Duty Cycle)

Base address — Enter the base address of the board. This entry must
corresponds to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MM5 Counter FM
The Quartz-MM5 has one AM9513A chip with 5 counters.

The Quartz-MM5 FM driver programs the AM9513A for FM (Frequency
Modulation) signal generation (a square wave with fixed duty cycle and
variable frequency). For the corresponding counter channel, the PWM signal is
output at the pin named OUT.

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double Oto1l

Driver Block Parameters

Counter — From the list, choose 1, 2, 3, 4, or 5 to select which counter is used
with this driver block. In each case, one block is needed for each counter.

Frequency base — From the list, choose F1=1MHz, F2=100kHz, F3=10kHz,
F4=1kHz, or F5=100Hz to set the base frequency. XTAL frequency is assumed to
be 1MHz, therefore the jumper on the CIO-CTRO05 has to be in position 1MHz
not 5MHz.

Output duty cycle — Enter a value between 0 and 1 to set the duty cycle of the
square wave. The Duty Cycle is held fixed during execution of the target
application.

Level sequence of square wave — From the list, choose either high-low or
low-high:

Quartz-MM 5

¢ Ifyou choose high-1low, the square wave period starts with the TTL high part
followed by the TTL low part.

¢ If you choose low-high, the square wave period starts with the TTL low part
followed by the TTL high part.

In either case, the duty cycle entering the block defines the duration of the TTL
high part.

Level when disarmed — From the list, choose either high or low. The counter
is automatically disarmed when the target application is not running and gets
armed when the application begins running. This parameter sets the TTL level
when the counter is disarmed.

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(Duty Cycle)

Base address — Enter the base address of the board. This entry must
corresponds to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

Quartz-MM5 Counter FM & ARM

The Quartz-MMS5 has one AM9513A chip with 5 counters.

The Quartz-MM5 FM & ARM driver programs the AM9513A for FM
(Frequency Modulation) signal generation (a square wave with fixed duty cycle
and variable frequency). Additionally the driver allows to arm and disarm the

counter by the second block input. For the corresponding counter channel, the
PWM signal is output at the pin named OUT.

17-47

1 7 Diamond

17-48

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
TTL Variable frequency: Double <0.5 disarmed
Arm: Double >0.5 armed

Driver Block Parameters

Counter — From the list, choose 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 to select which
counter is used with this driver block. In each case, one block is needed for each
counter.

Frequency base — From the list, choose F1=1MHz, F2=100kHz, F3=10kHz,
F4=1kHz, or F5=100Hz to set the base frequency. The XTAL frequency is
assumed to be 1MHz, therefore the jumper on the CIO-CTRO05 has to be in
position 1MHz not 5MHz.

Output duty cycle — Enter a value between 0 and 1 to set the duty cycle of the
square wave. The Duty Cycle is held fixed during execution of the target
application.

Note Your control over the output duty cycle is not always precise. See
“PWM and FM Driver Block Notes” on page 1-8 for details.

Level sequence of square wave — From the list, choose either high-low or

low-high:

¢ Ifyou choose high-low, the square wave period starts with the TTL high part
followed by the TTL low part.

e If you choose low-high, the square wave period starts with the TTL low part
followed by the TTL high part.

In either case, the Output duty cycle defined in the setting above define the
duration of the TTL high part.

Quartz-MM 5

Level when disarmed — From the list, choose either high or 1ow. The counter
is automatically disarmed when the target application is not running. If the
application is running, the second input port controls whether the counter is
armed or disarmed. This parameter sets the TTL level when the counter is
disarmed.

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(Duty Cycle)

Base address — Enter the base address of the board. This entry must
corresponds to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MM5 PWM Capture

This block programs the AMD9513A for capturing PWM signals by using two
counters. One counter measures the cycle duration, and the other counter
measures the duration the signal is high.

There are two outputs. One output is the relative frequency compared to the
base frequency. The other output is the duty cycle. To get the actual frequency,
multiply the base frequency by the relative frequency.

The PWM signal has to enter the pins named GATE of both corresponding
counter channels (parallel wiring). Both CLK pins have to be left unconnected.

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
TTL Double Otol

Driver Block Parameters

Counter — From the list, choose 1&2, 2&3, 3&4, or 4&5. This selects which two
counters the driver block uses to determine the PWM. Use one block for each
pair of counters. No two blocks should use the same counter. For example, use
counters 18&2 for one block and 384 for a second block. Do not use a combination
like 1&2 and 2&3.

17-49

1 7 Diamond

17-50

Frequency base — From the list, choose F1=1MHz, F2=100kHz, F3=10kHz,
F4=1kHz, or F5=100Hz to set the base frequency. The XTAL frequency is
assumed to be 1MHz, therefore the jumper on the Quartz-MMS5 has to be in
position 1MHz not 5MHz.

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(Duty Cycle)

Base address — Enter the base address of the board. This entry must
corresponds to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MMS5 FM Capture
This block programs the AMD9513A for capturing FM signals.

There is one output for relative frequency compared to the base frequency. To
get the actual frequency, multiply the base frequency by the relative frequency.

The FM signal has to enter the pin named GATE of the corresponding counter
channel. The CLK pin has to be left unconnected.

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double Oto1l

Driver Block Parameters

Counter — From the list, choose 1, 2, 3, 4 or 5. This selects which counter the
driver block uses to determine the FM. In each case, one block is needed for
each counter.

Frequency base — From the list, choose F1=1MHz, F2=100kHz, F3=10kHz,
F4=1kHz, or F5=100Hz to set the base frequency. The XTAL frequency is
assumed to be 1MHz, therefore the jumper on the Quartz-MMS5 has to be in
position 1MHz not 5MHz.

Quartz-MM 5

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(Duty Cycle)

Base address — Enter the base address of the board. This entry must
corresponds to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MMxx

You can use this block to program the AMD9513A counter. The PWM, PWM &
ARM, FM, FM & ARM, PWM Capture, and FM Capture blocks use this block
in their underlying subsystems. The API for this block is not currently
documented.

17-51

1 7 Diamond

Quariz-MM 10

17-52

The Quartz-MM 10 has eight digital input line, eight digital output lines, and

10 counter/timers.

xPC Target supports this board with these driver blocks:

® “Quartz-MM 10 Digital Input” on page 17-53

® “Quartz-MM 10 Digital Output” on page 17-54

¢ “Quartz-MM 10 Counter PWM” on page 17-54

® “Quartz-MM 10 Counter PWM & ARM” on page 17-56
® “Quartz-MM 10 Counter FM” on page 17-57

® “Quartz-MM 10 Counter FM & ARM” on page 17-59

® “Quartz-MM 10 PWM Capture” on page 17-60

® “Quartz-MM 10 FM Capture” on page 17-61

® “Quartz-MMxx” on page 17-62

Board Characteristics

Board name

Manufacturer

Bus type

Access method

Multiple block instance support
Multiple board support

Quartz-MM 10

Diamond Systems Corporation
ISA (PC/104)

I/0 mapped

Yes

Yes

QuartzzMM 10

Quartz-MM 10 Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines used with this port. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital inputs for one port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

17-53

1 7 Diamond

17-54

Quartz-MM 10 Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines used with this port. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital inputs for one port, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MM 10 Counter PWM
The Quartz-MM10 has two AM9513A chips with five counters each.

The Quartz-MM10 PWM driver programs the AM9513A for PWM (pulse width
modulation) signal generation (a square wave with fixed frequency and
variable duty cycle). The block has one input that defines the variable duty
cycle between 0 and 1. For the corresponding counter channel, the PWM signal
is output at the pin named OUT.

QuartzzMM 10

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
TTL Double Otol

Driver Block Parameters

Counter — From the list, choose 1, 2, 3, 4, or 5 to select which counter is used
with this driver block. In each case, one block is needed for each counter.

Frequency base — From the list, choose F1=4MHz, F2=400kHz, F3=40kHz,
F4=4kHz, or F5=400Hz to set the base frequency. The XTAL frequency is
assumed to be 1 MHz; therefore the jumper on the Quartz MM-10 must be in
position 1 MHz not 5 MHz.

Relative output frequency — Enter a value between 0 and .25*Frequency
base. The Relative output frequency is multiplied by the Frequency base to
set the fixed output frequency of the PWM signal.

For example, if the output frequency of a square wave must be 17.5 kHz, then
choose F2=100kHz as the Frequency base and enter 0.175 as the Relative
output frequency. 100 kHz x 0.175 = 17.5 kHz

Level sequence of square wave — From the list, choose either high-low or
low-high:

¢ Ifyou choose high-low, the square wave period starts with the TTL high part
followed by the TTL low part.

¢ If you choose low-high, the square wave period starts with the TTL low part
followed by the TTL high part.

In either case, the duty cycle entering the block defines the duration of the TTL
high part.

Level when disarmed — From the list, choose either high or 1ow. The counter
is automatically disarmed when the target application is not running and
becomes armed when the application begins running. This parameter sets the
TTL level when the counter is disarmed.

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(duty cycle)

17-55

1 7 Diamond

17-56

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MM 10 Counter PWM & ARM

The Quartz-MM 10 has two AM9513A chips with five counters.

The Quartz-MM 10 PWM & ARM driver programs the AM9513A for PWM or
disarmed signal generation (a square wave with fixed frequency and variable
duty cycle). Additionally the driver allows you to arm and disarm the counter

by using the second block input. For the corresponding counter channel, the
PWM signal is output at the pin named OUT.

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
TTL Duty cycle: Double Oto1l
Arm: Double <0.5 disarmed
>0.5 armed

Driver Block Parameters

Counter — From the list, choose 1, 2, 3, 4, or 5 to select which counter is used
with this driver block. In each case, one block is needed for each counter.

Frequency base — From the list, choose F1=1MHz, F2=100kHz, F3=10kHz,
F4=1kHz, or F5=100Hz to set the base frequency. The XTAL frequency is
assumed to be 1 MHz, therefore the jumper on the Quartz-MM 10 must be in
position 1 MHz not 5 MHz.

Relative output frequency — Enter a value between 0 and .25*Frequency
base. The Relative output frequency is multiplied by the Frequency base to
set the fixed output frequency of the PWM signal.

For example, if the output frequency of a square wave must be 17.5 kHz, then
choose F2=100kHz as the Frequency base and enter 0.175 as the Relative
output frequency. 100 kHz x 0.175 = 17.5 kHz

QuartzzMM 10

Level sequence of square wave — From the list, choose either high-low or
low-high:

¢ Ifyou choose high-low, the square wave period starts with the TTL high part
followed by the TTL low part.

¢ If you choose low-high, the square wave period starts with the TTL low part
followed by the TTL high part.

In either case, the duty cycle entering the block defines the duration of the TTL
high part.

Level when disarmed — From the list, choose either high or low. The counter
is automatically disarmed when the target application is not running. If the
application is running, the second input port controls whether the counter is
armed or disarmed. This parameter sets the TTL level when the counter is
disarmed.

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(duty cycle)

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MM 10 Counter FM
The Quartz-MM10 has two AM9513A chips with five counters.

The Quartz-MM10 FM driver programs the AM9513A for FM (frequency
modulation) signal generation (a square wave with fixed duty cycle and
variable frequency). For the corresponding counter channel, the FM signal is
output at the pin named OUT.

17-57

1 7 Diamond

17-58

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double Oto1l

Driver Block Parameters

Counter — From the list, choose 1, 2, 3, 4, or 5 to select which counter is used
with this driver block. In each case, one block is needed for each counter.

Frequency base — From the list, choose F1=4MHz, F2=400kHz, F3=40kHz,
F4=4kHz, or F5=400Hz to set the base frequency. XTAL frequency is assumed to
be 1 MHz; therefore the jumper on the Quartz-MM 10 must be in position 1
MHz not 5 MHz.

Output duty cycle — Enter a value between 0 and 1 to set the duty cycle of the
square wave. The duty cycle is held fixed during execution of the target
application.

Note Your control over the output duty cycle is not always precise. See
“PWM and FM Driver Block Notes” on page 1-8 for details.

Level sequence of square wave — From the list, choose either high-low or
low-high:

¢ Ifyou choose high-low, the square wave period starts with the TTL high part
followed by the TTL low part.

e If you choose low-high, the square wave period starts with the TTL low part
followed by the TTL high part.

In either case, the duty cycle entering the block defines the duration of the TTL
high part.

Level when disarmed — From the list, choose either high or 1ow. The counter
is automatically disarmed when the target application is not running and
becomes armed when the application begins running. This parameter sets the
TTL level when the counter is disarmed.

QuartzzMM 10

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(duty cycle)

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MM 10 Counter FM & ARM
The Quartz-MM 10 has two AM9513A chips with five counters.

The Quartz-MM 10 FM & ARM driver programs the AM9513A for FM
(frequency modulation) signal generation (a square wave with fixed duty cycle
and variable frequency). Additionally the driver allows you to arm and disarm
the counter by the second block input. For the corresponding counter channel,
the FM signal is output at the pin named OUT.

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
TTL Variable frequency: Double <0.5 disarmed
Arm: Double >0.5 armed

Driver Block Parameters

Counter — From the list, choose 1, 2, 3, 4,5, 6, 7, 8, 9, or 10 to select which
counter is used with this driver block. In each case, one block is needed for each
counter.

Frequency base — From the list, choose F1=1MHz, F2=100kHz, F3=10kHz,
F4=1kHz, or F5=100Hz to set the base frequency. The XTAL frequency is
assumed to be 1 MHz; therefore the jumper on the Quartz-MM 10 must be in
position 1 MHz not 5 MHz.

Output duty cycle — Enter a value between 0 and 1 to set the duty cycle of the
square wave. The duty cycle is held fixed during execution of the target
application.

17-59

1 7 Diamond

17-60

Note Your control over the output duty cycle is not always precise. See
“PWM and FM Driver Block Notes” on page 1-8 for details.

Level sequence of square wave — From the list, choose either high-low or
low-high:

¢ Ifyou choose high-low, the square wave period starts with the TTL high part
followed by the TTL low part.

® If you choose low-high, the square wave period starts with the TTL low part
followed by the TTL high part.

In either case, the Output duty cycle defined in the setting above defines the
duration of the TTL high part.

Level when disarmed — From the list, choose either high or low. The counter
is automatically disarmed when the target application is not running. If the
application is running, the second input port controls whether the counter is
armed or disarmed. This parameter sets the TTL level when the counter is
disarmed.

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(duty cycle).

Base address — Enter the base address of the board. This entry must

correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MM 10 PWM Capture

This block programs the AM9513A for capturing PWM signals by using two
counters. One counter measures the cycle duration, and the other counter
measures the length of time the signal is high.

There are two outputs. One output is the relative frequency compared to the
base frequency. The other output is the duty cycle. To get the actual frequency,
multiply the base frequency by the relative frequency.

QuartzzMM 10

The PWM signal must enter the pins of both corresponding counter channels
(parallel wiring) named GATE. Both CLK pins must be left unconnected.

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
TTL Double Otol

Driver Block Parameters

Counter — From the list, choose 1&2, 2&3, 384, 485, 6&7, 7&8, 8&9, or 9&10. This
selects which two counters the driver block uses to determine the PWM. Use
one block for each pair of counters. No two blocks should use the same counter.
For example, use counters 1&2 for one block and 3&4 for a second block. Do not
use a combination like 1&2 and 2&3.

Frequency base — From the list, choose F1=1MHz, F2=100kHz, F3=10kHz,
F4=1kHz, or F5=100Hz to set the base frequency. The XTAL frequency is
assumed to be 1 MHz, therefore the jumper on the Quartz-MM 10 must be in
position 1 MHz not 5 MHz.

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(duty cycle)

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MM 10 FM Capture
This block programs the AM9513A for capturing FM signals.

There is one output for relative frequency compared to the base frequency. To
get the actual frequency, multiply the base frequency by the relative frequency.

The FM signal must enter the pin of the corresponding counter channel named
GATE. The CLK pin must be left unconnected.

17-61

1 7 Diamond

17-62

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double Oto1l

Driver Block Parameters

Counter — From the list, choose 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. This selects which
counter the driver block uses to determine the FM. In each case, one block is
needed for each counter.

Frequency base — From the list, choose F1=1MHz, F2=100kHz, F3=10kHz,
F4=1kHz, or F5=100Hz to set the base frequency. The XTAL frequency is
assumed to be 1 MHz, therefore the jumper on the Quartz-MM 10 must be in
position 1 MHz not 5 MHz.

Sample time — Enter the base sample time or a multiple of the base sample
time. The sample time indicates the update rate of registration on the input
(duty cycle).

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Quartz-MMxx

You can use this block to program the AM9513A counter. The PWM, PWM &
ARM, FM, FM & ARM, PWM Capture, and FM Capture blocks use this block
in their underlying subsystems. The API for this block is not currently
documented.

Ruby-MM

Ruby-MM

The Diamond Ruby-MM is a PC104 I/O board with 4 or 8 single analog output
(D/A) channels (12-bit), unipolar and bipolar operation, +/- 10V, +/- 5V, 0-10V,
0-5V fixed ranges, +/- 2.5V, 0-2.5V user-adjustable ranges, 24 digital input and
output lines.

xPC Target supports this board with these driver blocks:
¢ “Diamond Ruby-MM Analog Output (D/A)” on page 17-63

¢ “Diamond Ruby-MM Digital Input” on page 17-65
¢ “Diamond Ruby-MM Digital Output” on page 17-66

Board Characteristics

Board name Diamond Ruby-MM
Manufacturer Diamond Systems Corporation
Bus type ISA (PC/104)

Access method I/0 Mapped

Multiple block instance support D/A:No, DIO:Yes
Multiple board support Yes

Diamond Ruby-MM Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
Volts Double 1

Driver Block Parameters

Channel vector — List the output channels as a vector. Up to 8 different
channels can be listed. To specify the first three channels, enter

[1,2,3]

17-63

1 7 Diamond

17-64

The board comes in two different hardware versions. If the 4-channel version
of the hardware is used and the channels 5-8 are listed, the those outputs will
not show an error, but the data will be ignored.

Range — The output range of the board is selected with jumpers on the board.
Each group of 4 channels can be jumpered for any of the available ranges. The
range you select in the Block Parameters must correspond to the range
specified by the jumper settings or you will obtain incorrect results.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between
the time the model is downloaded and the time it is started.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board in hexadecimal (such as
0x300) as selected with the hardware jumpers on the board.

Note Please consult the appropriate Diamond Ruby-MM hardware manuals
for more information on jumper settings and I/O connections.

Ruby-MM

Diamond Ruby-MM Digital Input

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines to be read. This driver allows the selection of up to 8 individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all of the digital inputs enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even though the board manufacturer starts
numbering lines with 0.

Port — From the Port list, choose either A, B, or C. The Port parameter defines
which port is used for this driver block. Each port has a maximum of 8 digital
inputs. In each case, one block is needed for each port.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board in hexadecimal (such as
0x300) as selected with the hardware jumpers on the board.

Note Please consult the appropriate Diamond Ruby-MM hardware manuals
for more information on jumper settings and I/O connections.

17-65

1 7 Diamond

17-66

Diamond Ruby-MM Digital Output

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 = TTL high

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital output
lines to drive. This driver allows the selection of up to 8 individual digital
output lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all of the digital inputs enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even though the board manufacturer starts
numbering lines with 0.

Port — From the Port list, choose either A, B, or C. The Port parameter defines
which port is used for this driver block. Each port has a maximum of 8 digital
outputs. In each case, one block is needed for each port.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial values (0 or
1) of the output channels. Enter a scalar or a vector that is the same length as
the channel vector. If you enter a scalar, that value is used for all channels. The
channels are set to these initial values between the time the model is
downloaded and the time it is started.

Sample time — Enter the base sample time or a multiple of the base sample
time.

Ruby-MM

Base address — Enter the base address of the board in hexadecimal (such as
0x300) as selected with the hardware jumpers on the board.

Note Please consult the appropriate Diamond Ruby-MM hardware manuals
for more information on jumper settings and I/O connections.

17-67

1 7 Diamond

Ruby-MM-416

The Ruby-MM-416 is an I/O board with four 16-bit analog output (D/A) chan-
nels, and 24 digital I/O lines that can be configured in groups of eight for
either input or output.

xPC Target supports this board with these driver blocks:
® “Ruby-MM-416 Analog Output (D/A)” on page 17-68

¢ “Ruby-MM-416 Digital Input” on page 17-70

® “Ruby-MM-416 Digital Output” on page 17-71

Board Characteristics

Board name Ruby-MM-416
Manufacturer Diamond Systems Corporation
Bus type ISA (PCI/104)
Access method I/O Mapped
Multiple block instance support D/A:No
DIO:Yes
Multiple board support Yes

Ruby-MM-416 Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling

Volts Double 1

17-68

Ruby-MM-416

Driver Block Parameters

Channel vector — Enter a vector containing channel numbers between 1 and
4. This driver allows the selection of individual D/A channels in any order. The
number of elements defines the number of D/A channels used. For example, to
use the first and second analog output (D/A) channels, enter

[1,2]
Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range vector — The range vector must be a scalar or a vector the same length
as the channel vector. The vector entries must use range codes from the
following table

Input Range (V) Range Code

-10 to +10 -10
-5to +5 -5
0to 10 10

The range codes you enter must be consistent with the jumper settings on the
board.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between
the time the model is downloaded and the time it is started. If you provide a
value that is out of the channel’s range, the value is reset to the lower or upper
range value.

Sample time — Base sample time or a multiple of the base sample time.

17-69

1 7 Diamond

17-70

Base address — Enter the base address of the board. This entry must
correspond to the base address setting on the board (header J6). For example,
if the base address is 300 (hexadecimal), enter

0x300

Ruby-MM-416 Digital Input

Ruby-MM-416 boards have three I/O ports, each containing eight digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital input driver
block for a given port, you configure that port for input.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines used with this port. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital inputs for the current port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Port — From the list choose A, B, or C.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Ruby-MM-416

Base address — Enter the base address of the board. This entry must
correspond to the base address board setting. For example, if the base address
is 300 (hexadecimal), enter

0x300

Ruby-MM-416 Digital Output

Ruby-MM-416 boards have three I/O ports, each containing eight digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital input driver
block for a given port, that port is configured for input.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital output
lines used with this port. This driver allows the selection of individual digital
output lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital outputs for the current port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Port — From the list choose A, B, or C.

Sample time — Enter a base sample time or a multiple of the base sample
time.

17-71

1 7 Diamond

Base address — Enter the base address of the board. This entry must
correspond to the base address board setting. For example, if the base address
is 300 (hexadecimal), enter

0x300

17-72

Ruby-MM-1612

Ruby-MM-1612

The Ruby-MM-1612 is an I/O board with 16 (12-bit) analog output (D/A)
channels, and 24 digital I/O lines that can be configured in groups of eight for
either input or output.

xPC Target supports this board with these driver blocks:
® “Ruby-MM-1612 Analog Output (D/A)” on page 17-73
¢ “Ruby-MM-1612 Digital Input” on page 17-76

¢ “Ruby-MM-1612 Digital Output” on page 17-77

Board Characteristics

Board name Ruby-MM-1612
Manufacturer Diamond Systems Corporation
Bus type ISA (PC/104)
Access method I/O Mapped
Multiple block instance support D/A:No
DIO:Yes
Multiple board support Yes

Ruby-MM-1612 Analog Output (D/A)

Scaling Input to Output

Hardware Output Block Input Data Type Scaling
Volts Double 1

Driver Block Parameters

Channel vector — Enter a vector containing channel numbers between 1 and
16. This driver allows the selection of individual D/A channels in any order.

17-73

1 7 Diamond

17-74

The number of elements defines the number of D/A channels used. For
example, to use the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board manufacturer starts
numbering the channels with 0.

Range for bank 1, Range for bank 2 — Bank 1 consists of channels 1 to 8 and
bank 2 consists of channels 9 to 16. The output range may be specified on a
per-bank basis. These ranges must correspond to the jumper settings in header
R4 on the board. See the board manual for details.

Note that if you select a range of either -5V to +5V or 0 to +5V for one bank,
then it is not possible to select a range of either -10vV to +10Vor 0 to +10V for
the other bank. This is because jumper 5 in header J4 (On-Board Reference
Full-Scale Voltage Selection) affects all channels, not just those of a single
bank. See the board manual for details. The following lists the allowed output
voltage range combinations for the two channel banks. B1 is the first bank of
channels, B2 is the second bank of channels.

B1 B2 Configuration
+10V +10V C11
0-10V +10V C41
+5V +5V C22
+2.5 +5V C32
0-5V +5V C52
0-25V +5V C62
+5V +2.5V C23
+25V +25V C33
0-5V +2.5V C53
0-25V +2.5V C63
+10V 0-10V Cl4

Ruby-MM-

1612

B1 B2 Configuration
0-10V 0-10V C44
5V 0-5V C25
+2.5V 0-5V C35
0-5V 0-5V C55
0-25V 0-5V C65
5V 025V C26
+2.5V 0-2.5V C36
0-5V 0-25V C56
0-25V 0-25V C66

This driver supports the Adjustable Reference Voltage. You can use this
feature with either output range -2.5V to +2.5Vor 0 to +2.5V. If for example
you adjust potentiometer R4 to 2.3 V (instead of the default setting of 2.5), then
an input signal of 1.2 results in an output voltage of (1.2/2.5) ¥ 2.3V =1.1V.
See the board manual for details.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between
the time the model is downloaded and the time it is started. If you provide a
value that is out of the channel’s range, the value is reset to the lower or upper
range value.

Sample time — Base sample time of a multiple of the base sample time.

17-75

1 7 Diamond

17-76

Base address — Enter the base address of the board. This entry must
correspond to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Ruby-MM-1612 Digital Input

Ruby-MM-1612 boards have three I/O ports, each containing eight digital I/O
lines. These ports can be configured independently for either input or output.
Use a separate driver block for each port. By selecting the digital input driver
block for a given port, that port is configured for input.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital input
lines used with this port. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital inputs for the current port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Port — From the list choose A, B, or C.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Ruby-MM-

1612

Base address — Enter the base address of the board. This entry must
correspond to the base address board setting. For example, if the base address
is 300 (hexadecimal), enter

0x300

Ruby-MM-1612 Digital Output

Ruby-MM-1612 series boards have three I/O ports, each containing eight
digital I/O lines. These ports can be configured independently for either input
or output. Use a separate driver block for each port. By selecting the digital
output driver block for a given port, you configure that port for output.

Scaling Input to Output

Hardware Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Driver Block Parameters

Channel vector — Enter numbers between 1 and 8 to select the digital output
lines used with this port. This driver allows the selection of individual digital
output lines in any order. The number of elements defines the number of digital
lines used.

For example, to use all the digital outputs for the current port, enter
[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer starts
numbering the lines with 0.

Port — From the list choose A, B, or C.

Reset vector — The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as the channel
vector. If you specify a scalar value, that setting is used for all channels. If you
specify a value of 1, the corresponding channel is reset to the value specified in
the initial value vector. If you specify a value of 0, the channel remains at the
last value attained while the model was running.

17-77

1 7 Diamond

17-78

Initial value vector — The initial value vector contains the initial voltage
values for the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that value is the
initial value for all channels. The channels are set to the initial values between
the time the model is downloaded and the time it is started. If you provide a
value that is out of the channel’s range, the value is reset to the lower or upper
range value.

Sample time — Enter a base sample time or a multiple of the base sample
time.

Base address — Enter the base address of the board. This entry must
correspond to the base address board setting. For example, if the base address
is 300 (hexadecimal), enter

0x300

(General Standards

I/0O boards supported by xPC Target (http://www.generalstandards.com).

Overview of PMC-ADADIO Description of how the PMC-ADADIO blocks can be
Functionality (p. 18-2) configured to interact with one another and other blocks.
PMC-ADADIO (p. 18-14) High performance multifunction board that has eight 16

bit analog to digital converters and eight 16 bit digital to
analog outputs. The board also has 8 bits of TTL level
digital I/O.

PMC-16A0-12 (p. 18-25) High speed board that has twelve 16 bit analog outputs.

1 8 General Standards

Overview of PMC-ADADIO Functionality

The PMC-ADADIO board is an analog I/O PCI mezzanine card (PMC) device
that can be used for a number of applications, such as data acquisition and
process monitoring.

xPC Target supports this board with A/D and D/A driver blocks. The following
xPC Target driver blocks control the A/D functionality of the PMC-ADADIO
board:

* “PMC-ADADIO Analog Input (A/D) Start” on page 18-15
e “PMC-ADADIO Analog Input (A/D) Read” on page 18-16

The following xPC Target driver blocks control the D/A functionality of the
PMC-ADADIO board:

¢ “PMC-ADADIO Analog Output (D/A) Write” on page 18-17
¢ “PMC-ADADIO Analog Output (D/A) Update” on page 18-20

The use of these drivers differ slightly from other boards. Of particular note are
the Boolean enable ports (labelled E) that most of the A/D and D/A blocks have
for input and/or output. These enable ports perform the following:

e Control block action. If the value of the input enable port is true, the block
executes. If the value is false, the block does not execute. Most blocks also
have output enable ports. The output enable port has the same value as the
input enable port. This allows the control block action value to be passed to
successive blocks.

¢ Ensure that A/D and/or D/A blocks execute in the correct order. For example,
the A/D Start block starts the analog to digital conversion of the channels
selected by the A/D Read block. This block must finish its operation before
the A/D Read block can execute. If the A/D Read block executes first, the A/D
Read block waits indefinitely for the A/D conversion to complete.

An input enable port can have an Enable Signal block connected to the port.
The Enable Signal block generates an input enable signal for the A/D and D/A

blocks. If you do not connect an Enable Signal block to the A/D or D/A block,
the input enable port has a constant value of 1, or ‘true.’

18-2

Overview of PMC-ADADIO Functionality

A typical A/D block configuration for analog input operation connects the AD
Start block and AD Read block. Because the A/D Start block can take several
microseconds to perform the analog to digital conversion of the channels
selected by the A/D Read block, you can perform other operations in the
meantime. For example, you can insert a typical D/A block configuration
between the AD Start and Read blocks. A typical configuration for analog
output operation connects the DA Write and DA Update blocks.

This section describes how to use the PMC-Adadio blocks to create a model that
interleaves the analog input and analog output operations. It has the following
topics:

* “A/D Blocks” on page 18-3

® “Create Enable Signal Blocks” on page 18-5

¢ “D/A Blocks” on page 18-8

¢ “Interleaving Analog Input and Analog Output Blocks” on page 18-10

® “Using Multiple Boards for Simultaneous Analog to Digital Conversion” on
page 18-12

A/D Blocks

A typical A/D block configuration for analog input operation connects the AD
Start block and AD Read block. The AD Start block converts the data of the
channels selected by the AD Read block.

Adding A/D Blocks to a Model for Analog Input

1 In the MATLAB Command Window, type
xpclib

The xPC Target driver block library opens.
2 Double-click the A/D group block.
A window with blocks for A/D drivers opens.
3 Double-click the General Standards group block.

A window with blocks for General Standards opens.

18-3

1 8 General Standards

18-4

From the File menu, select New -> Model.

Drag and drop an AD Start block from the General Standards window to the
new model.

By default, this block should have the Enable input port and Enable
output port check boxes selected.

Drag and drop an AD Read block from the General Standards window to the
new model.

By default, this block has the Enable input port and Enable output port
check boxes selected. Double-click the AD Read block and deselect the
Enable output port. Deselecting this check box prohibits the block from
passing the Boolean value from the input enable port to the output enable
port.

Connect the AD Start block to the AD Read block.

-ioix

File Edit WYiew Simulation Format Tools Help

FiC-ADADIO FiC-ADADIO
E GenemlStds E | E GenemlSds 1
AD Start AD Read
ADADIC ADADIC A
Note the following

= No signal has been connected to the AD Start block’s input enable port, E,
so the port has a default value of ‘true’. Accordingly, the output enable port
of the AD Start block and input enable port of the AD Read block also have
a value of ‘true’. You can drag and drop a Ground block from the Simulink
Source library and connect that block to the unconnected input port of AD
Start to prevent build errors until you add another block. You can drag and
drop a Terminator block from the Simulink Sink library and connect that

Overview of PMC-ADADIO Functionality

block to unconnected output ports of AD Read to prevent build errors until
you add other blocks.

= Connecting the output enable port of the AD Start block to the input
enable port of the AD Read block ensures that the AD Start block executes
before the AD Read block. The AD Start block initiates the A/D conversion.
The Read block waits until the conversion has completed before putting
the results on its output port.

Note The Start block must execute before every call to the Read block. If the
Read block is executed without the Start block, the system hangs because it is
waiting for data to be available.

8 From the File menu, select Save As. Browse to a writable directory and
enter a unique model name. For example, AdadioADDA, then click Save.

Your next task is to add a Create Enable Signal block to this model. See
“Adding Enable Signal Blocks to A/D Blocks” on page 18-6.

Create Enable Signal Blocks
The A/D and D/A series of blocks both have Create Enable Signal blocks.

5 Ceate
Enable EpR
L Signal

Smeate Enable Signal

You can use a Create Enable Signal block to generate an input enable signal
for A/D and D/A blocks. You can connect a signal generator to the input of the
Create Enable Signal block to control the output enable port. You can then
connect the output E port of the Create Enable Signal block to the input E port
of an A/D or D/A block.

18-5

1 8 General Standards

18-6

Adding Enable Signal Blocks to A/D Blocks

This procedure assumes that you have a model named AdadioADDA (see
“Adding A/D Blocks to a Model for Analog Input” on page 18-3). Add a Create
Enable Signal block to generate an input enable signal for the AD Start block.
If you have Ground or Terminator blocks, remove them as you make
connections to the additional blocks.

If your model AdadioADDA is not already open, in the MATLAB Command
Window, type

AdadioADDA

The model opens.

In the MATLAB window, type
xpclib

The xPC Target library opens.

Double-click the A/D group block.

A window with blocks for A/D drivers opens.
Double-click the General Standards group block.

A window with blocks for General Standards opens.

Drag and drop a Create Enable Signal block from the General Standards
window to the new model.

Double click the Create Enable Signal block and deselect the Show input
port for thresholding signal of type double.

The Create Enable block has an output enable port, E, that can provide an
input enable signal for any of the other PMC-ADADIO blocks. The Boolean
value of this output enable port is controlled by an input port, S, and
(optionally) an input port, L. When the S port is connected to the output of
an arbitrary block B, the Create Enable Signal block executes immediately
after block B executes. The L port is a level-sensitive thresholding port that
allows an attached signal to control the Boolean value at the output enable
port E.

Overview of PMC-ADADIO Functionality

7 Click Start -> Simulink -> Library Browser.
8 Click Sources. The Sources pane displays the included blocks.
9 Drag and drop a Sine Wave block to the new model.

10 Connect the output port of the Sine Wave block to the input port S of the
Create Enable Signal block.

Connecting the Sine Wave to the Create Enable Signal block triggers the
sequence chain of the ADADIO blocks.

11 In the new model, connect the S port of the Create Enable Signal block to the
Sine Wave block.

12 In the new model, connect the AD Start block E port to the Create Enable
Signal E port.

The output enable port, E, of the Create Enable Signal block provides the
first Boolean output to feed into the other ADADIO driver blocks.

il

File Edit WYiew Simulation Format Tools Help

Create FiC-ADADIO FiC-ADADIO
B—.S Enable E—E GenemlStds E | E GenemlSds 1
Signal AD Start AD Read
Sine Wawve
Create Enable Signal ADADIC ADADIC A

13 From the File menu, select Save.

Your next task is to set up the D/A blocks to provide the analog output for the
analog input blocks.

18-7

1 8 General Standards

18-8

D/A Blocks

A typical D/A block configuration for analog output operation connects the DA
Write block and DA Update block. The DA Update block converts the data that
the DA Write block puts out.

Adding D/A Blocks to a Model for Analog Output

If the model AdadioADDA is not already open, in the MATLAB Command
Window, type

AdadioADDA
The model opens.

In the MATLAB window, type
xpclib

The xPC Target library opens.

Double-click the D/A group block.

A window with blocks for D/A drivers opens.
Double-click the General Standards group block.

A window with blocks for General Standards opens.

Drag and drop a DA Write block from the General Standards window to the
new model.

Drag and drop a DA Update block from the General Standards window to
the new model.

Connect the DA Update block to the DA Write block.

Overview of PMC-ADADIO Functionality

Z)adadioADDA =]
File Edit Yiew Simulation Format | Tools Help
Create FiC-ADADIO FiC-ADADIO
5 Enable E—E GenemlStds E E GenemlStds 1
Signal AD Start AD Read
Sine Wawve
Create Enable Signal ADADIC ADADIC A
E PMC-ADADIO FhiC-ADADIC
GenermlStds g E GenemlStds E
1 DA Write: DA Update
ADADIO 2 ADADICO 2
Note the following:

® No signal has been connected to the DA Write block’s input enable port, E, so
the port has a default value of ‘true’. Accordingly, the output enable port of
the DA Write block and input enable port of the DA Update block also have
a value of ‘true’.

¢ Connecting the output enable port of the DA Write block to the input enable
port of the DA Update block ensures that the DA Write block executes before
the DA Update block. The DA Write block loads the PMC-ADADIO registers
in preparation for the D/A conversion. The DA Update block waits until the
loading has completed before initiating the D/A conversion. As with the AD
Start and Read blocks, the DA Write and Update blocks do not need to be

directly connected to each other. You can interleave other blocks if you want.

You can interleave the analog output blocks between the AD Start and AD
Read blocks. Such a configuration allows the analog output block to perform
concurrently with the A/D conversion by the AD Start block. To connect to the
AD Start and AD Read blocks, the interleaving block(s) must have an input
enable port and an output enable port. See “Interleaving Analog Input and
Analog Output Blocks” on page 18-10.

18-9

1 8 General Standards

18-10

Interleaving Analog Input and Analog Output
Blocks

After the AD Start block executes, the acquisition hardware becomes busy with
the operation. If you have the AD Read block execute immediately, it will idle
waiting for the hardware to finish the acquisition. Rather than allowing idle
cycles, you can insert other blocks between the AD Start and AD Read block.
You can insert

® An atomic subsystem that has a pass through input for the enable signal

from the AD Start to the AD Read blocks. This type of system enforces an
execution order where the inserted subsystem executes between the other
two blocks.

e A pair of blocks that already have an enable port, such as DA Write and DA

Update. Because the DA Write and DA Update blocks already have an
enable port, you do not have to include them in another subsystem to ensure
correct execution order. See the following enable line for the execution order:

a AD Start enable out to DA Write enable in
b DA Write enable out to DA Update enable in
¢ DA Update enable out to AD Read enable in

This results in the time sequence: AD Start -> DA Write -> DA Update -> AD
Read. By the time AD Read executes, the hardware has either finished or is
much closer to finishing. Less time is wasted than if you use no interleaving.
Note that the data input to DA Write comes from another part of the model.
Typically, it will be the value calculated from the AD Read from the previous
time step.

The following procedure assumes that you have a model named AdadioADDA
that has AD Start and Read blocks, an Enable Create Signal block, and DA
Write and Update blocks:

1 If the model AdadioADDA is not already open, in the MATLAB Command

Window, type
AdadioADDA

The model opens.

Overview of PMC-ADADIO Functionality

8

9

In the MATLAB window, type
xpclib

The xPC Target library opens.
Disconnect the AD Start block from the AD Read block.

Perform this step to insert the intermediate DA blocks between the AD Start
and Read blocks.

Connect the output E port of the AD Start block to the input E port of the
DA Write block.

Connect the output port of the Sine Wave block to the input 1 port of the DA
Write block.

Connect the output E port of the DA Write block to the input E port of the
DA Update block.

Connect the output E port of the DA Update block to the input E port of the
AD Read block.

At the xPC Target library, double-click the Misc group block

Drag and drop the Scope (xPC) block into the AdadioADDA model.

10 Connect the output E port of the AD Read block to the Scope (xPC) block.

-ioix

File Edit WYiew Simulation Format Tools Help

il Greate PMG-ADADIO PMG-ADADIO Tamet Soope
»s Enabk Ef—ME GenemiStds E E GenemlSws 1 | (3EES0OR
IR Signal AD Start AD Read d: 1
Sine Wawe
Greate Enable Signal ADADIC ADADIC 1 Scope (PG)

E PMS-ADADIO PG -4 D8 DI
GenemlStds g B E GenemlStds E
1 DA Write: DA Update
ADADID 2 ADADID 3

18-11

1 8 General Standards

18-12

11 From the File menu, select Save.

You can build and run the model and download it to your target PC like any
other xPC Target model.

Using Multiple Boards for Simultaneous Analog to
Digital Conversion

The previous topics describe how to set up a model for up to eight channels
performing simultaneous analog to digital conversion. You can increase the
number of channels for this conversion by using two or more PMC-ADADIO
boards, configured in a master/slave configuration.

In such a configuration, observe the following guidelines:

® Decide how many slave PMC-ADADIO boards you want in your
configuration.

¢ Identify one PMC-ADADIO as the master board.

® Create a model that uses the master PMC-ADADIO board. This model must
contain an A/D Start block for the master board.

® For each PMC-ADADIO board in your system, including the master and all
slave boards, the model must contain an associated A/D Read block.

¢ Connect the Enable output port (E) of the A/D Start block of the master board
to the Enable input port (E) of each of the slave A/D Read blocks. You can do
this in one of the following ways. Note that the order in which the A/D Read
blocks are connected is irrelevant.

= Directly connect the Enable output port (E) of the A/D Start block to the
Enable input port (E) of each of the slave A/D Read blocks.

= Directly connect the Enable output port (E) of the A/D Start block to the
Enable input port (E) of the first slave A/D Read block, then create a daisy
chain of slave Enable input to Enable output ports for the slave A/D Read
blocks. For example

Overview of PMC-ADADIO Functionality

File Edit Wiew Simulakion Format Tools Help

=101 %]

P iS4 D DD
E GenemlSwds E
AD Stan

ADADI

FmS-ADADID E
p{E GEneml Stds
AD Read 1

ADADIC 1

PMC-ADADID E

L E GenemlStds

AD Read

1

—

PWC-ADADID E

E GenzmlSds
AD Read

1

ADADIO 2

ADADIO 3

¢ Connect pin4 of the P5B connector (INPUT TRIGGER READY signal) of the
master board to pin 2 of the P5B connector (INPUT TRIGGER signal) of all
the slave boards. For example

Board1 Board2 Board3
Master Slave Slave
| |
Pin 4 Pin 2 Pin 2
P5B P5B __—1" PSB __—1"
connector connector connector

Note The pulse of the master board INPUT TRIGGER READY output occurs
250 nanoseconds after the software trigger in the A/D Start block. This results
in a 250 nanosecond delay, relative to the master board, for the slave boards,
but should still be considered simultaneous in most situations.

18-13

1 8 General Standards

PMC-ADADIO

18-14

The PMC-ADADIO is a high performance multifunction board that has eight
16 bit analog to digital converters and four 16 bit digital to analog outputs. Up
to eight input channels are sampled simultaneously from a single acquisition
start. The board also has 8 bits of TTL level digital I/O. All 8 bits are either
inputs or outputs.

You can purchase the PMC-ADADIO board in either a memory mapped or an
I/0O mapped configuration. The driver detects this configuration and adjusts for
it. In addition, you order the board for a specific factory configured voltage
range. Consult the board’s documentation to determine the voltage range of
your board.

xPC Target supports this board with these driver blocks:

* “PMC-ADADIO Analog Input (A/D) Start” on page 18-15

e “PMC-ADADIO Analog Input (A/D) Read” on page 18-16

* “PMC-ADADIO Analog Output (D/A) Write” on page 18-17

¢ “PMC-ADADIO Analog Output (D/A) Update” on page 18-20

¢ “PMC-ADADIO Digital Input” on page 18-21

* “PMC-ADADIO Digital Output” on page 18-22

® “Create Enable Signal” on page 18-24

Note that you cannot use the PMC-ADADIO Digital Input and Digital Output

driver blocks simultaneously on the same board. Trying to do so results in an
error.

PMC-ADADIO

Board Characteristics

Board name PMC-ADADIO

Manufacturer General Standards

Bus type PCI

Access method Memory mapped or I/O mapped

Multiple block instance support No
Multiple board support Yes

PMC-ADADIO Analog Input (A/D) Start

Scaling Input to Output

The values passed to the enable input port and enable output port of this block
are Boolean values.

Driver Block Parameters

Enable input port — Select this check box to display the enable input port that
controls the execution of the A/D conversion. If the enable input signal is true,
the A/D conversion begins. If the enable input signal is false, then the A/D
conversion is not started. If this check box is not selected, then the enable input
signal is assumed to be true.

Enable output port — Select this check box to pass the Boolean value from the
input enable port to the output enable port. You can connect this port to the
input enable port on another block to control other blocks in the model and
specify execution ordering.

Sample time — Enter the base sample time or a multiple of the base sample
time.

PCI Slot (-1:autosearch) — If only one board of this type is physically present
in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are physically present in the target PC, enter
the bus number and the PCI slot number of the board associated with this

18-15

1 8 General Standards

18-16

driver block. Use the format [BusNumber, SlotNumber]. To determine the bus
number and the PCI slot number, type

getxpcpci

PMC-ADADIO Analog Input (A/D) Read

Scaling Input to Output

Hardware Input